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Deep Learning

Roadmap

@ Embedding Numerous Features: Kernel Models
@® Combining Predictive Features: Aggregation Models
@ Distilling Implicit Features: Extraction Models

Lecture 12: Neural Network

automatic pattern feature extraction from layers of
neurons with backprop for GD/SGD

Lecture 13: Deep Learning

@ Deep Neural Network

e Autoencoder

e Denoising Autoencoder

@ Principal Component Analysis
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Deep Learning Deep Neural Network

Physical Interpretation of NNet Revisited

Xo =1 +1 +1

X1

. —— tanh —
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Xd 3\2) tanh xéz)

o each layer: pattern feature extracted from data, remember? :-)
* how many neurons? how many layers?
—more generally, what structure?

e subjectively, your design!
e objectively, validation, maybe?

structural decisions:
key issue for applying NNet J
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Deep Learning Deep Neural Network

Shallow versus Deep Neural Networks
shallow: few (hidden) layers; deep: many layers J

Shallow NNet Deep NNet

e more efficient to train (O) ¢ challenging to train (x)
e simpler structural e sophisticated structural
decisions () decisions (x)
e theoretically powerful e ‘arbitrarily’ powerful (O)
enough (O) e more ‘meaningful’? (see
) next slide)
deep NNet (deep learning)
gaining attention in recent years J

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 3/24



Deep Learning Deep Neural Network

Meaningfulness of Deep Learning

positive weight

negative weight

e ‘less burden’ for each layer: simple to complex features
« natural for difficult learning task with raw features, like vision J
deep NNet: currently popular in
vision/speech/. .. ‘
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Deep Learning Deep Neural Network

Challenges and Key Techniques for Deep Learning

o difficult structural decisions:
¢ subjective with domain knowledge: like convolutional NNet for
images
¢ high model complexity:
¢ no big worries if big enough data
e regularization towards noise-tolerant: like
e dropout (tolerant when network corrupted)
e denoising (tolerant when input corrupted)
¢ hard optimization problem:

o careful initialization to avoid bad local minimum:
called pre-training

¢ huge computational complexity (worsen with big data):
¢ novel hardware/architecture: like mini-batch with GPU

IMHO, careful regularization and
initialization are key techniques J
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Deep Learning Deep Neural Network

A Two-Step Deep Learning Framework

Simple Deep Learning

© forc=1,... L, pre-train {Wy)} assuming WS), W££_1
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will focus on simplest pre-training technique
along with regularization
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Deep Learning Deep Neural Network

Fun Time

For a deep NNet for written character recognition from raw pixels,
which type of features are more likely extracted after the first hidden
layer?

© pixels

® strokes

® parts

@ digits




Deep Learning Deep Neural Network

Fun Time

For a deep NNet for written character recognition from raw pixels,
which type of features are more likely extracted after the first hidden
layer?

© pixels

® strokes

® parts

@ digits

Reference Answer: @

Simple strokes are likely the ‘next-level’
features that can be extracted from raw pixels.
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Deep Learning Autoencoder

Information-Preserving Encoding

o weights: feature transform, i.e. encoding OO0

¢ good weights: information-preserving encoding
—next layer same info. with different representation

¢ information-preserving: OO0
decode accurately after encoding
(@lelel®

(©O0O0)

idea: pre-train weights towards
information-preserving encoding J
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Deep Learning Autoencoder

Information-Preserving Neural Network

X0=1
X1

o
Xzéw

X3

Xd

- autoencoder: d—d—d NNet with goal g;(x) ~ X;
—Ilearning to approximate identity function

. w( ): encoding weights; w ( ): decoding weights

why approximating identity function? J
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Deep Learning Autoencoder

Usefulness of Approximating Identity Function

if g(x) ~ x using some hidden structures on the observed data x,
o for supervised learning:

¢ hidden structure (essence) of x can be used as reasonable
transform ®(x)

—Ilearning ‘informative’ representation of data
« for unsupervised learning:

o density estimation: larger (structure match) when g(x) ~ x
o outlier detection: those x where g(x) # x

—Ilearning ‘typical’ representation of data

autoencoder:

representation-learning through
approximating identity function
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Deep Learning Autoencoder

Basic Autoencoder
basic autoencoder:

d—d—d NNet with error function 7, (g;(x) — x;)?

« backprop easily applies; shallow and easy to train
« usually d < d: compressed representation

* data: {(X1,V1 =X )7 (XZa Yo = Xg), O (xNa YN = XN)}
—often categorized as unsupervised learning technique

e sometimes constrain w,.j(.” = Wj(,.z) as regularization
—more sophisticated in calculating gradient

basic autoencoder in basic deep learning:
{ w! )} taken as shallowly pre-trained weights
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Deep Learning Autoencoder

Pre-Training with Autoencoders
Deep Learning with Autoencoders

O fori=1,..., L, pre-train { w!t )} assuming WS), Wy_” fixed
©O00) ©O00)

N

LR

SR

LR

N2 N2

2R 2R

N

LR

by training basic autoencoder on { x\- 1)} with d = d®

® train with backprop on pre-trained NNet to fine-tune all { (Z)}

v

many successful pre-training techniques take
‘fancier’ autoencoders with different
architectures and regularization schemes
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Deep Learning Autoencoder

Fun Time

Suppose training a d:cNI—d autoencoder with backprop takes
approximately ¢ - d - d seconds. Then, what is the total number of
seconds needed for pre-training a d-d()-d(®-d(®)-1 deep NNet?

o c(d+ d(” +d® 4+ d®) +1)
c(d- d®.d® 1)
(dd d<2> +d@d®) 4 )
(dd 1. d(1 ). g @) . d(S))




Deep Learning Autoencoder

Fun Time

Suppose training a d:EI—d autoencoder with backprop takes
approximately ¢ - d - d seconds. Then, what is the total number of
seconds needed for pre-training a d-d(1)-d(®)-d(®)-1 deep NNet?
0 c(d+ d(” +d® 4+ d®) +1)
c(d- d® . q@®). 1)
c (dd( 1> + d( d<2> +d®@d® 4 g@)
(dd . dMg@ . g2 g@d) . d(S))

Reference Answer: @

Each ¢ - d=1 . d(9) represents the time for
pre-training with one autoencoder to determine
one layer of the weights.

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques

13/24



Deep Learning Denoising Autoencoder

Regularization in Deep Learning

X =1 +1 +1
) W o @ ann / -
Xo A%
X w - tanh
tanh
" a1

watch out for overfitting, remember? :-)

high model complexity: regularization needed
structural decisions/constraints
weight decay or weight elimination regularizers
early stopping

next: another regularization technique J
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Deep Learning Denoising Autoencoder

Reasons of Overfitting Revisited

0.2
0.1
0

1
-0.1
-0.2

Number of Data Pomts N

Noise Level, 02

datasize N | overfit
reasons of serious overfitting: noise 1 overfit
excessive power 1 overfit

how to deal with noise? )
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Deep Learning Denoising Autoencoder
Dealing with Noise
e direct possibility:
» a wild possibility: adding noise to data?

v

e idea: robust autoencoder should not only let g(x) ~ x
but also allow g(x) ~ x even when X slightly different from x

¢ denoising autoencoder:

run basic autoencoder with data

{(X1,y1 = Xq),(X2,¥2 = X2),...,(Xn, YN = XN)},
where X, = X+ artificial noise

—often used instead of basic autoencoder in deep learning
« useful for data/image processing: g(x) a denoised version of X
o effect: ‘constrain/regularize’ g towards noise-tolerant denoising

v

artificial noise/ as regularization!
—practically also useful for other NNet/modeIsJ
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Deep Learning Denoising Autoencoder

Fun Time

Which of the following cannot be viewed as a regularization technique?

© hint the model with artificially-generated noisy data
@ stop gradient descent early

@ add a weight elimination regularizer

@ all the above are regularization techniques




Deep Learning Denoising Autoencoder

Fun Time

Which of the following cannot be viewed as a regularization technique?

© hint the model with artificially-generated noisy data
@ stop gradient descent early

@ add a weight elimination regularizer

@ all the above are regularization techniques

Reference Answer: @

@ is our new friend for regularization, while

@ and @ are old friends.
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Deep Learning Principal Component Analysis

Linear Autoencoder Hypothesis

nonlinear autoencoder linear autoencoder
sophisticated simple

linear: more efficient? less overfitting? linear first, remember? :-)

linear hypothesis for k-th component hy(x) = Z Wj (Z w,]x,>

consider three special conditions:

» exclude xp: range of i same as range of k
e constrain W(1) WJE ) = = wj: regularization
—denote W = [w;] of size d x d

« assume d < d: ensure non-trivial solution

linear autoencoder hypothesis:
h(x) = Ww'x J
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Deep Learning Principal Component Analysis

Linear Autoencoder Error Function

2 ~
Ein(h) = En(W) = —WWTx,|| with d x d matrix W

—analytic solution to mlnlmlze Eix? but 4-th order polynomial of w;

let’s familiarize the problem with linear algebra (be brave! :-))

« eigen-decompose WW' = vIv’T
e d x d matrix V orthogonal: VVT = V'V =14
e d x d matrix I diagonal with < d non-zero
e WW'x,=VIVTx,
e V'(x,): change of orthonormal basis (rotate or reflect)
e I'(---): set > d — d components to 0, and scale others
e V(---): reconstruct by coefficients and basis (back-rotate)

e X, = VIVTx,: rotate and back-rotate cancel out

next: minimize E;, by optimizing I’ and V J
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Deep Learning Principal Component Analysis

The Optimal T
2
| N
- T T
min ml_lnNZ VIV x, - VIvTx,
n=1 Xn WWTx,,

» back-rotate not affecting length: X
o minr 3 ||(I — I)(some vector)||?: want many 0 within (I —I")
« optimal diagonal I with rank < d:

d
0 O

d diagonal components 1
other components 0

} — without loss of gen. [L

o
[E—

N
next: min 2
n=

2
0O O T
[0 Id_a]Vxn

N—————

I—optimal '
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Deep Learning Principal Component Analysis

The Optimal V
N 2 N 2
. 0 O I O
m\}n ,,221 [ 01, ; }V Xyl = m\gx ,?:1 [ 6’ 0 ]VTx,7

d = 1: only first row v7 of VT matters
maxy > vTx,x/ v subject to v7v = 1
optimal v satisfies 5", x,x/v = v
—using Lagrange multiplier A, remember? :-)
optimal v: ‘topmost’ eigenvector of XX
general d: {vj}f’:1 ‘topmost’ eigenvectorS of XX
—optimal {w;} = {v; with [y; = 1]} = top eigenvectors

linear autoencoder: projecting to orthogonal
patterns w; that ‘matches’ {x,} most }
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Deep Learning Principal Component Analysis

Principal Component Analysis

Linear Autoencoder or

@ letx = 1 >N . xp, and let X, < X, — X

©® calculate d top eigenvectors wy, Wo, . .. , Wy of XX
© return feature transform ®(x) = W(x—Xx)

linear autoencoder:
maximize 3" (maginitude after projection)?

principal component analysis (PCA) from statistics:
maximize ) _(variance after projection)

both useful for linear dimension reduction
though PCA more popular

linear dimension reduction:
useful for data processing
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Deep Learning Principal Component Analysis

Fun Time

When solving the optimization problem
maxy >N . vTx,x] v subject to viv =1,

we know that the optimal v is the ‘topmost’ eigenvector that
corresponds to the ‘topmost’ eigenvalue \ of X X. Then, what is the
optimal objective value of the optimization problem?

Q)
0 )?
(5 N
0




Deep Learning Principal Component Analysis

Fun Time

When solving the optimization problem
maxy >N . vTx,x] v subject to viv =1,

we know that the optimal v is the ‘topmost’ eigenvector that
corresponds to the ‘topmost’ eigenvalue \ of X X. Then, what is the
optimal objective value of the optimization problem?

o)
0 )2
o N
0 ) J

Reference Answer: @

The objective value of the optimization problem
is simply v X7 Xv, which is A\v"v and you
know what v’ v must be.
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Deep Learning Principal Component Analysis

Summary

@ Embedding Numerous Features: Kernel Models
@® Combining Predictive Features: Aggregation Models
® Distilling Implicit Features: Extraction Models

Lecture 13: Deep Learning

@ Deep Neural Network
difficult hierarchical feature extraction problem
e Autoencoder

unsupervised NNet learning of representation
e Denoising Autoencoder

using noise as hints for regularization

e Principal Component Analysis

linear autoencoder variant for data processingJ

¢ next: extracting ‘prototype’ instead of pattern
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