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Support Vector Regression

Roadmap

© Embedding Numerous Features: Kernel Models

Lecture 5: Kernel Logistic Regression

two-level learning for SVM-like sparse model for
soft classification, or using representer theorem
with regularized logistic error for dense model

v

Lecture 6: Support Vector Regression

e Kernel Ridge Regression

e Support Vector Regression Primal
e Support Vector Regression Dual
e Summary of Kernel Models

A

® Combining Predictive Features: Aggregation Models
@ Distilling Implicit Features: Extraction Models
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Support Vector Regression Kernel Ridge Regression

Recall: Representer Theorem
for any L2-regularized linear model

N
. AT 1 T
min - Swiw+ ;err(yn,w z,)
optimal w, = >N . 3,2,

—any L2-regularized linear model can be kernelized!

v

regression with squared error

err(y, w'z) = (y — w'2)?

—analytic solution for linear/ridge regression

analytic solution for kernel ridge regression?J
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Support Vector Regression Kernel Ridge Regression

Kernel Ridge Regression Problem

N
. . . . )\ T T 2
solving ridge regression min W' w + N ; (Yn—W'Zp)
N
yields optimal solution w. = >~ 5,2,
n=1

with out loss of generality, can solve for optimal 3 instead of w

A N N 1 N N
H 2
m,@')n N Z Z BnBmK (Xn, Xm) + N Z Yn — Z BmK (Xn, Xm)
n=1 m=1 n=1 m=1
regularization of 3 on K-based regularizer linear regression of 3 on K-based features

A 1
= SATKB+ 5 (BTK'KB - 28Ky +yTy)

kernel ridge regression:
use representer theorem for kernel trick on ridge regression
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Support Vector Regression Kernel Ridge Regression

Solving Kernel Ridge Regression
Eug(B) = 587KB+ 1(BTKTKA 287Ky +yTy)

VEag(B) = % (AKTIﬁ +KTKB — KTy) = %KT(()\I 1 K)B— y)

v

want V Ea,g(3) = 0: one analytic solution

B=A+K)y
o ()" always exists for \ > 0, because
K positive semi-definite (Mercer’s condition, remember? :-))
o time complexity: O(N3) with simple dense matrix inversion

can now do non-linear regression ‘easily’ )
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Support Vector Regression Kernel Ridge Regression

Linear versus Kernel Ridge Regression

e

linear ridge regression kernel ridge regression

w = (AI+X'X)" X"y B = (M+K) 'y
e more restricted e more flexible with K
o O(d® + d?N) training; o O(N®) training;

O(d) prediction O(N) prediction

—efficientwhen N > d | —hard for big data

linear versus kernel:
trade-off between efficiency and flexibility
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Support Vector Regression Kernel Ridge Regression

Fun Time

After getting the optimal 3 from kernel ridge regression based on some
kernel function K, what is the resulting g(x)?

(1] ZL BnK(Xn, X)

(2] Zg:1 YnBnK(Xn, X)

(3 Zgﬁ BnK (Xn, X) + A
(4] 25:1 YnBnK(Xn, X) + A




Support Vector Regression Kernel Ridge Regression

Fun Time

After getting the optimal 3 from kernel ridge regression based on some
kernel function K, what is the resulting g(x)?

(1] Zﬁ:1 BnK(Xn, X)

(2] Zyﬂ YnBnK(Xn, X)

(3 Zgﬂ BnK(Xn, X) + A
(4] Zﬁﬂ YnBnK(Xn, X) + A

Reference Answer: @

Recall that the optimal w = >N . 5.z, by
representer theorem and g(x) = w’z. The
answer comes from combining the two
equations with the kernel trick.
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Support Vector Regression Support Vector Regression Primal

Soft-Margin SVM versus Least-Squares SVM

least-squares SVM (LSSVM)
kernel ridge regression for classification J

&

o 9 . OO
oS odﬂa:n
o o
B
Bg) B &
13 5I7:§|( B iz =
soft-margin Gaussian SVM Gaussian LSSVM

e LSSVM: similar boundary, many more SVs
— slower prediction, dense 3 (BIG g)

e dense 3: LSSVM, kernel LogReg;
sparse «: standard SVM

want: sparse 3 like standard SVM ]
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Support Vector Regression Primal

Tube Regression

Support Vector Regression

will consider tube regression

o within a tube: no error
o outside a tube: error by distance to tube

error measure:

err(y,8) = max(0,|s—y|—¢)
|s—y|<e 0
s—y|>els—y|l—e
—usually called e-insensitive error with ¢ > 0 |

todo: L2-regularized tube regression
to get sparse 3 J

Machine Learning Techniques
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Support Vector Regression Support Vector Regression Primal

Tube versus Squared Regression

L

tube: err(y, s) = max(0,|s — y| —€) | squared: err(y,s) = (s — y¥)?

—squared
—tube

err tube ~ squared when |s — y| small
& less affected by outliers J
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Support Vector Regression Support Vector Regression Primal

L2-Regularized Tube Regression

DY 1
min NwTw o ; max (0, wiz, —y| - e)

Regularized Tube Regr. standard SVM

min yw’w + £ 3" tube violation min w’w + C Y margin vio.
e unconstrained, e not differentiable,
but max not differentiable but QP
 ‘representer’ to kernelize, e dual to kernelize,
but no obvious sparsity KKT conditions = sparsity

will mimic standard SVM derivation:

N
: 1.7 T
rBw éw w+C;max(0,|w zn+b—y,,|—e>
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Support Vector Regression Support Vector Regression Primal

Standard Support Vector Regression Primal

N
, 1
min EwTw + C; max (0, W'z, +b— y,| — e)

b,w

mimicking standard SVM making constraints linear

N N
. L Voo A
min oW w+C;§n oW w+Cn§_:1(£n+£,,)
st. Wizp+b—yn|<e+& —e—&<yp—Wzp—b<e+&)
§n>0 &n 20,60 >0

v

Support Vector Regression (SVR) primal:
minimize regularizer + (upper tube violations &) & lower violations &)
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Support Vector Regression Support Vector Regression Primal

Quadratic Programming for SVR
. 1 N
pumin EWTW +C Z_: (& + &)

S.t. —E—fr\;g}/n Wzn b<€+§n
€y 20,67 >0

» parameter C: trade-off of regularization &
tube violation

o parameter e: vertical tube width
—one more parameter to choose!

e QP of d + 1+ 2N variables, 2N + 2N
constraints

v

next: remove dependence on d by
SVR primal = dual?
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Support Vector Regression Support Vector Regression Primal

Fun Time

Consider solving support vector regression with e = 0.05. At the
optimal solution, assume that w’z; + b = 1.234 and y; = 1.126. What
is & and £1'?

O &/ =0.108,¢) = 0.000

® ¢/ =0.000,¢) =0.108

® &/ =0.058,¢) = 0.000

O ¢/ =0.000,& = 0.058




Support Vector Regression Support Vector Regression Primal

Fun Time

Consider solving support vector regression with e = 0.05. At the

optimal solution, assume that w’z; + b = 1.234 and y; = 1.126. What

is & and £0'?
© ¢/ =0.108,¢ = 0.000
® ¢/ =0.000,¢) =0.108
® &/ =0.058,¢) = 0.000
® ¢/ =0.000,¢ = 0.058

Reference Answer: @

y1 —w’zy — b= —0.108 < —0.05, which
means that there is a lower tube violation of
amount 0.058. When there is a lower tube
violation on some example, trivially there is no
upper tube violation.

v
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Support Vector Regression Support Vector Regression Dual

Lagrange Multipliers o™ &

N
I . 1
objective function SW'wW+C Z (&y +&5)

Lagrange multiplier o) for y, —w'z,— b< e+&)

Lagrange multiplier ) for —e—¢&Y < yn— w'z,—b

Some of the KKT Conditions

oL N A Vv
.8W;:0:W22(an_an)zn ;
n=1 =~ r—"

ape+E) —yp+wWzp+b) = 0

« complementary slackness:
P y al(e+& +Yn—W'Zzp—b) = 0

standard dual can be derived
using the same steps as Lecture 4
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Support Vector Regression
1 N
min EWTW +C ¢
n=1

st ya(wiz,+b)>1-¢,
£n >0

N N
o1
min 5 Z Z anamynymK (Xn, Xm)

n=1m=1

N
— Z 1 - Qn
n=1
N
s.t. Zynan =0
n=1

OSOCnSC

Support Vector Regression Dual

SVM Dual and SVR Dual

V.

min

N
1.7
oW W+C;(£S+EX)
st 1(yp—wW'z,—b) < e+
1wz, +b—yy) <e+&
£n 20,67 >0

1 N N
min 2> > (e — an)(am — am)knm

n=1m=

N
+D ((e—yn)-ap +(e+yn) - )

s.t. Z il <

similar QP, solvable by similar solver ]
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Support Vector Regression Support Vector Regression Dual

Sparsity of SVR Solution
N
e W= nZ:3 (ap —ap)zn

1%,—/
Bn

complementary slackness:

aﬁ,\(e+§’,§—yn+wrzn+b) =0
ap(e+& +yn—wW'zo—b) = 0

strictly within tube |W'z, + b — y,| < €

= ¢ =0and&l =0

— (e+&) —yn+Wzp+b)£A0and (e +& +yn—W'z,—b) #£0
= ap=0and o) =0

= Bp=0

SVs (8, # 0): on or outside tube

SVR: allows sparse 3 J

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 16/23



Support Vector Regression Support Vector Regression Dual

Fun Time

What is the number of variables within the QP problem of SVR dual?
Q@d+1
®d+1+2N
ON
O 2N




Support Vector Regression Support Vector Regression Dual

Fun Time

What is the number of variables within the QP problem of SVR dual?
Qd+1
®d+1+2N
ON
O 2N

Reference Answer: @

There are N variables within oV, and another
Nin a”.
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Support Vector Regression Summary of Kernel Models

Map of Linear Models

linear SVR

minimize regularized
errryge by QP

PLA/pocket
minimize
errg/1 specially

linear soft-margin linear ridge regularized logistic
SVM regression regression
minimize regularized | minimize regularized | minimize regularized
errsym by QP errsqr analytically errce by GD/SGD

second row: popular in LIELINEAR ]
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Support Vector Regression Summary of Kernel Models

Map of Linear/Kernel Models

PLA/pocket linear SVR_____|
linear soft-margin linear ridge regularized logistic
SVM regression regression
kernel ridge kernel logistic
regression regression

kernelized linear ridge | kernelized regularized
regression logistic regression

v

SVR probabilistic SVM

minimize SVM dual by | minimize SVR dual by | run SVM-transformed
QP QP | logistic regression

fourth row: popular in LIBESVIV J
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Support Vector Regression Summary of Kernel Models

Map of Linear/Kernel Models

PLA/pocket 'linear SVR

linear soft-margin linear ridge regularized logistic
SVM regression regression

kernel ridge kernel logistic
regression regression

SV probabilistic SVM

first row: less used due to worse performance
third row: less used due to dense 3
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Support Vector Regression Summary of Kernel Models

Kernel Models
possible kernels:

polynomial, Gaussian, . .., your design (with Mercer’s condition),

coupled with

kernel ridge kernel logistic

regression regression

S L - 0b:bilistio SVM

powerful extension of linear models
—with great power comes great responsibility
in Spiderman, remember? :-)
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Support Vector Regression Summary of Kernel Models

Fun Time

Which of the following model is less used in practice?
© pocket
® ridge regression
@ (linear or kernel) soft-margin SVM
@ reqgularized logistic regression




Support Vector Regression Summary of Kernel Models

Fun Time

Which of the following model is less used in practice?
© pocket
® ridge regression
® (linear or kernel) soft-margin SVM
@ regularized logistic regression

Reference Answer: @

The pocket algorithm generally does not
perform better than linear soft-margin SVM,
and hence is less used in practice.
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Support Vector Regression Summary of Kernel Models

Summary

© Embedding Numerous Features: Kernel Models

Lecture 6: Support Vector Regression

e Kernel Ridge Regression
representer theorem on ridge regression
e Support Vector Regression Primal
minimize regularized tube errors
e Support Vector Regression Dual
a QP similar to SVM dual

e Summary of Kernel Models

with great power comes great responsibilityl

® Combining Predictive Features: Aggregation Models
¢ next: making cocktail from learning models

@ Distilling Implicit Features: Extraction Models
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