Homework #0

1 Probability and Statistics

(1) (combinatorics)

Let C(N, K) = 1 for K = 0 or K = N, and C(N, K) = C(N - 1, K) + C(N - 1, K - 1) for $N \ge 1$. Prove that $C(N, K) = \frac{N!}{K!(N-K)!}$ for $N \ge 1$ and $0 \le K \le N$.

(2) (counting)

What is the probability of getting exactly 4 heads when flipping 10 fair coins?

What is the probability of getting a full house (XXXYY) when randomly drawing 5 cards out of a deck of 52 cards?

(3) (conditional probability)

If your friend flipped a fair coin three times, and tell you that one of the tosses resulted in head, what is the probability that all three tosses resulted in heads?

(4) (Bayes theorem)

A program selects a random integer X like this: a random bit is first generated uniformly. If the bit is 0, X is drawn uniformly from $\{0, 1, ..., 7\}$; otherwise, X is drawn uniformly from $\{0, -1, -2, -3\}$. If we get an X from the program with |X| = 1, what is the probability that X is negative?

(5) (union/intersection)

If P(A) = 0.3 and P(B) = 0.4, what is the maximum possible value of $P(A \cap B)$? what is the minimum possible value of $P(A \cup B)$? what is the minimum possible value of $P(A \cup B)$?

2 Linear Algebra

(1) (rank)

What is the rank of
$$\begin{pmatrix} 1 & 2 & 1 \\ 1 & 0 & 3 \\ 1 & 1 & 2 \end{pmatrix}$$
?

(2) (inverse)

What is the inverse of $\begin{pmatrix} 0 & 2 & 4 \\ 2 & 4 & 2 \\ 3 & 3 & 1 \end{pmatrix}$?

(3) (eigenvalues/eigenvectors)

What are the eigenvalues and eigenvectors of $\begin{pmatrix} 3 & 1 & 1 \\ 2 & 4 & 2 \\ -1 & -1 & 1 \end{pmatrix}$?

- (4) (singular value decomposition)
 - (a) For a real matrix M, let $M = U\Sigma V^T$ be its singular value decomposition. Define $M^{\dagger} = V\Sigma^{\dagger}U^T$, where $\Sigma^{\dagger}[i][j] = \frac{1}{\Sigma[i][j]}$ when $\Sigma[i][j]$ is nonzero, and 0 otherwise. Prove that $MM^{\dagger}M = M$.
 - (b) If M is invertible, prove that $M^{\dagger} = M^{-1}$.

(5) (PD/PSD)

A symmetric real matrix A is positive definite (PD) *iff* $\mathbf{x}^T A \mathbf{x} > 0$ for all $\mathbf{x} \neq \mathbf{0}$, and positive semidefinite (PSD) if ">" is changed to " \geq ". Prove:

- (a) For any real matrix Z, ZZ^T is PSD.
- (b) A symmetric A is PD *iff* all eigenvalues of A are strictly positive.
- (6) (inner product)

Consider $\mathbf{x} \in \mathbb{R}^d$ and some $\mathbf{u} \in \mathbb{R}^d$ with $\|\mathbf{u}\| = 1$. What is the maximum value of $\mathbf{u}^T \mathbf{x}$? What \mathbf{u} results in the maximum value? What is the minimum value of $\mathbf{u}^T \mathbf{x}$? What \mathbf{u} results in the minimum value? What is the minimum value of $|\mathbf{u}^T \mathbf{x}|$? What \mathbf{u} results in the minimum value?

3 Calculus

(1) (differential and partial differential)

Let
$$f(x) = \ln(1 + e^{-2x})$$
. What is $\frac{df(x)}{dx}$? Let $g(x, y) = e^x + e^{2y} + e^{3xy^2}$. What is $\frac{\partial g(x, y)}{\partial y}$?

(2) (chain rule)

Let f(x,y) = xy, $x(u,v) = \cos(u+v)$, $y(u,v) = \sin(u-v)$. What is $\frac{\partial f}{\partial v}$?

- (3) (gradient and Hessian) Let $E(u, v) = (ue^v - 2ve^{-u})^2$. Calculate the gradient ∇E and the Hessian $\nabla^2 E$ at u = 1 and v = 1.
- (4) (Taylor's expansion) Let $E(u, v) = (ue^v - 2ve^{-u})^2$. Write down the second-order Taylor's expansion of E around u = 1and v = 1.
- (5) (optimization) For some given A > 0, B > 0, solve

$$\min_{\alpha} A e^{\alpha} + B e^{-2\alpha}.$$

(6) (vector calculus)

Let **w** be a vector in R^d and $E(\mathbf{w}) = \frac{1}{2}\mathbf{w}^T \mathbf{A}\mathbf{w} + \mathbf{b}^T \mathbf{w}$ for some symmetric matrix A and vector **b**. Prove that the gradient $\nabla E(\mathbf{w}) = \mathbf{A}\mathbf{w} + \mathbf{b}$ and the Hessian $\nabla^2 E(\mathbf{w}) = \mathbf{A}$.