
Machine Learning Foundations (NTU, Fall 2016) instructor: Hsuan-Tien Lin

Homework #3.5
RELEASE DATE: 12/29/2016

DUE DATE: 1/17/2017 (TUESDAY!!!), BEFORE 14:00

QUESTIONS ABOUT HOMEWORK MATERIALS ARE WELCOMED ON THE FACEBOOK
FORUM.

Unless granted by the instructor in advance, you must turn in a printed/written copy of your solutions
(without the source code) for all problems.

For problems marked with (*), please follow the guidelines on the course website and upload your
source code to designated places. You are encouraged to (but not required to) include a README to help
the TAs check your source code. Any programming language/platform is allowed.

Any form of cheating, lying, or plagiarism will not be tolerated. Students can get zero scores and/or fail
the class and/or be kicked out of school and/or receive other punishments for those kinds of misconducts.

Discussions on course materials and homework solutions are encouraged. But you should write the final
solutions alone and understand them fully. Books, notes, and Internet resources can be consulted, but
not copied from.

Since everyone needs to write the final solutions alone, there is absolutely no need to lend your homework
solutions and/or source codes to your classmates at any time. In order to maximize the level of fairness
in this class, lending and borrowing homework solutions are both regarded as dishonest behaviors and will
be punished according to the honesty policy.

You should write your solutions in English or Chinese with the common math notations introduced in
class or in the problems. We do not accept solutions written in any other languages.

This homework set comes with 200 points and 20 bonus points. In general, every home-
work set would come with a full credit of 200 points, with some possible bonus points.

Linear Regression

1. Consider a noisy target y = wT
f x + ε, where x ∈ Rd (with the added coordinate x0 = 1), y ∈ R,

wf is an unknown vector, and ε is a noise term with zero mean and σ2 variance. Assume ε is
independent of x and of all other ε’s. If linear regression is carried out using a training data set
D = {(x1, y1), . . . , (xN , yN )}, and outputs the parameter vector wlin, it can be shown that the
expected in-sample error Ein with respect to D is given by:

ED[Ein(wlin)] = σ2

(
1− d+ 1

N

)
For σ = 0.1 and d = 8, what is the smallest number of examples N that will result in an expected
Ein greater than 0.008? Please provide calculation steps of your answer.

Error and SGD

2. Which of the following are upper bounds of
q
sign(wTx) 6= y

y
for y ∈ {−1,+1}? Explain your

choices.

[a] err(w) = max(0, 1− ywTx)

[b] err(w) =
(
max(0, 1− ywTx)

)2
[c] err(w) = max(0,−ywTx)

[d] err(w) = θ(−ywTx)

[e] err(w) = exp(−ywTx)

3. When using SGD on the following error functions and ‘ignoring’ some singular points that are not
differentiable, prove or disprove that err(w) = max(0,−ywTx) results in PLA.
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Gradient Descent and Beyond

4. Consider a function

E(u, v) = eu + e2v + euv + u2 − 2uv + 2v2 − 3u− 2v.

In class, we have taught that the update rule of the gradient descent algorithm is

(ut+1, vt+1) = (ut, vt)− η∇E(ut, vt)

Please start from (u0, v0) = (0, 0), and fix η = 0.01, what is E(u5, v5) after five updates? Please
provide derivation steps.

5. Continued from the previous question, if we approximate the E(u + ∆u, v + ∆v) by Ê2(∆u,∆v),
where Ê2 is the second-order Taylor’s expansion of E around (u, v). Suppose

Ê2(∆u,∆v) = buu(∆u)2 + bvv(∆v)2 + buv(∆u)(∆v) + bu∆u+ bv∆v + b.

What are the values of (buu, bvv, buv, bu, bv, b) when (u, v) = (0, 0)? Please provide derivation
steps.

6. Continued from the previous question and denote the Hessian matrix to be ∇2E(u, v), and assume
that the Hessian matrix is positive definite. What is the optimal (∆u,∆v) to minimize Ê2(∆u,∆v)?
The direction is called the Newton Direction. Please provide derivation steps.

7. Using the Newton direction (without η) to update, please start from (u0, v0) = (0, 0), what is
E(u5, v5) after five updates? Please provide derivation steps.

Regularization and Weight Decay

Consider the augmented error

Eaug(w) = Ein(w) +
λ

N
wTw

with some λ > 0.

8. If we want to minimize the augmented error Eaug(w) by gradient descent, with η as learning rate,
the resulting update rule should be

w(t+ 1)←− αw(t) + β∇Ein(w(t))

what are α and β? Prove your answer.

Virtual Examples and Regularization

Consider linear regression with virtual examples. That is, we addK virtual examples (x̃1, ỹ1), (x̃2, ỹ2), . . . , (x̃K , ỹK)
to the training data set, and solve

min
w

1

N +K

(
N∑
n=1

(yn −wTxn)2 +

K∑
k=1

(ỹk −wT x̃k)2

)
.

We will show that using some ‘special’ virtual examples, which were claimed to be a possible way to
combat overfitting in Lecture 9, is related to regularization, another possible way to combat overfitting
discussed in Lecture 10. Let X̃ = [x̃1x̃2 . . . x̃K ]T , and ỹ = [ỹ1, ỹ2, . . . , ỹK ]T .

9. What is the optimal w to the optimization problem above, assuming that all the inversions exist?
Provide an analytic solution and prove its correctness.
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10. For what X̃ and ỹ will the solution of this linear regression equal to

wreg = argminw

λ

N
‖w‖2 +

1

N
‖Xw − y‖2?

Prove your answer.

Experiments with Logistic Regression

11. (*) Implement the fixed learning rate gradient descent algorithm below for logistic regression, ini-
tialized with 0. Run the algorithm with η = 0.001 and T = 2000 on the following set for training:

http://www.csie.ntu.edu.tw/~htlin/course/ml15fall/hw3/hw3_train.dat

and the following set for testing:

http://www.csie.ntu.edu.tw/~htlin/course/ml15fall/hw3/hw3_test.dat

What is the weight vector within your g? What is the Eout(g) from your algorithm, evaluated using
the 0/1 error on the test set?

12. (*) Implement the fixed learning rate stochastic gradient descent algorithm below for logistic re-
gression, initialized with 0. Instead of randomly choosing n in each iteration, please simply pick
the example with the cyclic order n = 1, 2, . . . , N, 1, 2, . . .. Run the algorithm with η = 0.001 and
T = 2000 on the following set for training:

http://www.csie.ntu.edu.tw/~htlin/course/ml15fall/hw3/hw3_train.dat

and the following set for testing:

http://www.csie.ntu.edu.tw/~htlin/course/ml15fall/hw3/hw3_test.dat

What is the weight vector within your g? What is the Eout(g) from your algorithm, evaluated using
the 0/1 error on the test set?

Experiment with Regularized Linear Regression and Validation

Consider regularized linear regression (also called ridge regression) for classification.

wreg = argminw

λ

N
‖w‖2 +

1

N
‖Xw − y‖2,

Run the algorithm on the following data set as D:

http://www.csie.ntu.edu.tw/~htlin/course/ml15fall/hw4/hw4_train.dat

and the following set for evaulating Eout:

http://www.csie.ntu.edu.tw/~htlin/course/ml15fall/hw4/hw4_test.dat

Because the data sets are for classification, please consider only the 0/1 error for all the problems below.

13. (*) Let λ = 1.126, what is the corresponding Ein and Eout?

14. (*) Plot the curve of Ein with respect to log10 λ = {2, 1, 0,−1, . . . ,−8,−9,−10}. What is the λ
with the minimum Ein? What is Eout(gλ) on such λ? Break the tie by selecting the largest λ.

15. (*) Plot the curve of Eout with respect to log10 λ = {2, 1, 0,−1, . . . ,−8,−9,−10}. What is the λ
with the minimum Eout? Break the tie by selecting the largest λ.

Now split the given training examples in D to the first 120 examples for Dtrain and 80 for Dval.

Ideally, you should randomly do the 120/80 split. Because the given examples are already randomly
permuted, however, we would use a fixed split for the purpose of this problem.

Run the algorithm on Dtrain to get g−λ , and validate g−λ with Dval.

16. (*) Plot Etrain(g−λ ) with respect to log10 λ = {2, 1, 0,−1, . . . ,−8,−9,−10}. What is the λ with the
minimum Etrain(g−λ )? What is Eout(g

−
λ ) on such λ? Break the tie by selecting the largest λ.
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17. (*) Plot Eval(g
−
λ ) with respect to log10 λ = {2, 1, 0,−1, . . . ,−8,−9,−10}. What is the λ with the

minimum Eval(g
−
λ )? What is Eout(g

−
λ ) on such λ? Break the tie by selecting the largest λ.

18. (*) Run the algorithm with the optimal λ of the previous problem on the whole D to get gλ. What
is Ein(gλ) and Eout(gλ)?

Now split the given training examples in D to five folds, the first 40 being fold 1, the next 40 being
fold 2, and so on. Again, we take a fixed split because the given examples are already randomly
permuted.

19. (*) Plot Ecv with respect to log10 λ = {2, 1, 0,−1, . . . ,−8,−9,−10}. What is the λ with the
minimum Ecv, where Ecv comes from the five folds defined above? Break the tie by selecting the
largest λ.

20. (*) Run the algorithm with the optimal λ of the previous problem on the whole D to get gλ. What
is Ein(gλ) and Eout(gλ)?

Bonus: More on Virtual Examples

21. (10 points) Continue from Question 9. Assume that we take the more general

wTΓTΓw

as the regularizer instead of the squared wTw. This is commonly called Tikhonov regularization.
What virtual examples should we equivalently add to the original data set?

22. (10 points) Continue from Question 9. Assume that we have some known hints whint about the
rough value of w and hence want to use

‖w −whint‖2

as the regularizer instead of the squared wTw. What virtual examples should we equivalently add
to the original data set?
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