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Training versus Testing

Roadmap
1 When Can Machines Learn?

Lecture 4: Feasibility of Learning
learning is PAC-possible

if enough statistical data and finite |H|
2 Why Can Machines Learn?

Lecture 5: Training versus Testing
Recap and Preview
Effective Number of Lines
Effective Number of Hypotheses
Break Point

3 How Can Machines Learn?
4 How Can Machines Learn Better?
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Training versus Testing Recap and Preview

Recap: the ‘Statistical’ Learning Flow
if |H| = M finite, N large enough,

for whatever g picked by A, Eout(g) ≈ Ein(g)
if A finds one g with Ein(g) ≈ 0,

PAC guarantee for Eout(g) ≈ 0 =⇒ learning possible :-)

unknown target function
f : X → Y

(ideal credit approval formula)

training examples
D : (x1, y1), · · · , (xN , yN)

(historical records in bank)

learning
algorithm
A

final hypothesis
g ≈ f

(‘learned’ formula to be used)

hypothesis set
H

(set of candidate formula)

unknown
P on X

x1, x2, · · · , xN x

Eout(g) ≈︸︷︷︸
test

Ein(g) ≈︸︷︷︸
train

0
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Training versus Testing Recap and Preview

Two Central Questions
for batch & supervised binary classification︸ ︷︷ ︸

lecture 3

, g ≈ f︸ ︷︷ ︸
lecture 1

⇐⇒ Eout(g) ≈ 0

achieved through Eout(g) ≈ Ein(g)︸ ︷︷ ︸
lecture 4

and Ein(g) ≈ 0︸ ︷︷ ︸
lecture 2

learning split to two central questions:
1 can we make sure that Eout(g) is close

enough to Ein(g)?
2 can we make Ein(g) small enough?

what role does M︸︷︷︸
|H|

play for the two questions?
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Training versus Testing Recap and Preview

Trade-off on M
1 can we make sure that Eout(g) is close enough to Ein(g)?
2 can we make Ein(g) small enough?

small M
1 Yes!,

P[BAD] ≤ 2 ·M · exp(. . .)
2 No!, too few choices

large M
1 No!,

P[BAD] ≤ 2 ·M · exp(. . .)
2 Yes!, many choices

using the right M (or H) is important
M =∞ doomed?
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Training versus Testing Recap and Preview

Preview

Known

P
[∣∣Ein(g)− Eout(g)

∣∣ > ε
]
≤ 2 ·M · exp

(
−2ε2N

)
Todo
• establish a finite quantity that replaces M

P
[∣∣Ein(g)− Eout(g)

∣∣ > ε
] ?
≤ 2 ·mH · exp

(
−2ε2N

)
• justify the feasibility of learning for infinite M
• study mH to understand its trade-off for ‘right’ H, just like M

mysterious PLA to be fully resolved
after 3 more lectures :-)
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Training versus Testing Recap and Preview

Fun Time
Data size: how large do we need?
One way to use the inequality

P
[∣∣Ein(g)− Eout(g)

∣∣ > ε
]
≤ 2 ·M · exp

(
−2ε2N

)
︸ ︷︷ ︸

δ

is to pick a tolerable difference ε as well as a tolerable BAD
probability δ, and then gather data with size (N) large enough to
achieve those tolerance criteria. Let ε = 0.1, δ = 0.05, and M = 100.
What is the data size needed?

1 215 2 415 3 615 4 815

Reference Answer: 2

We can simply express N as a function of those ‘known’ variables.
Then, the needed N = 1

2ε2 ln 2M
δ .
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Training versus Testing Effective Number of Lines

Where Did M Come From?

P
[∣∣Ein(g)− Eout(g)

∣∣ > ε
]
≤ 2 ·M · exp

(
−2ε2N

)
• BAD events Bm: |Ein(hm)− Eout(hm)| > ε

• to give A freedom of choice: bound P[B1 or B2 or . . .BM ]

• worst case: all Bm non-overlapping

P[B1 or B2 or . . .BM ] ≤︸︷︷︸
union bound

P[B1] + P[B2] + . . .+ P[BM ]

where did uniform bound fail
to consider for M =∞?
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Training versus Testing Effective Number of Lines

Where Did Uniform Bound Fail?
union bound P[B1] + P[B2] + . . .+ P[BM ]

• BAD events Bm: |Ein(hm)− Eout(hm)| > ε

overlapping for similar hypotheses h1 ≈ h2

• why? 1 Eout(h1) ≈ Eout(h2)

why?

2 for most D, Ein(h1) = Ein(h2)

• union bound over-estimating B3

B1
B2

to account for overlap,
can we group similar hypotheses by kind?
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Training versus Testing Effective Number of Lines

How Many Lines Are There? (1/2)

H =
{

all lines in R2
}

• how many lines? ∞
• how many kinds of lines if viewed from one input vector x1?

•x1

2 kinds: h1-like(x1) = ◦ or h2-like(x1) = ×
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Training versus Testing Effective Number of Lines

How Many Lines Are There? (2/2)

H =
{

all lines in R2
}

• how many kinds of lines if viewed from two inputs x1,x2?

•x1

•x2

4: ◦
◦

×
×

◦
×

×
◦

one input: 2; two inputs: 4; three inputs?
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Training versus Testing Effective Number of Lines

How Many Lines Are There? (2/2)

H =
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Training versus Testing Effective Number of Lines

How Many Kinds of Lines for Three Inputs? (1/2)

H =
{

all lines in R2
}

for three inputs x1,x2,x3

•x1

•x2

•x3

always 8 for three inputs?

8:

◦
◦ ◦

×
× ×

◦
◦ ×

×
× ◦

◦
× ◦

×
◦ ×

◦
× ×

×
◦ ◦
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Training versus Testing Effective Number of Lines

How Many Kinds of Lines for Three Inputs? (2/2)

H =
{

all lines in R2
}

for another three inputs
x1,x2,x3

•x1

•x2

•x3

‘fewer than 8’ when degenerate
(e.g. collinear or same inputs)

6:

◦
◦◦

×
××

◦
◦×

×
×◦

◦
×◦

×
◦×

◦
××

×
◦◦
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Training versus Testing Effective Number of Lines

How Many Kinds of Lines for Four Inputs?

H =
{

all lines in R2
}

for four inputs x1,x2,x3,x4

•x1

•x2

•x3

•x4

for any four inputs
at most 14

14: 2×

◦
◦ ◦

◦ ◦
× ×

×

◦
◦ ◦

× ◦
× ×

◦

◦
◦ ×

◦ ◦
× ◦

×

◦
◦ ×

× ◦
× ◦

◦
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Training versus Testing Effective Number of Lines

Effective Number of Lines
maximum kinds of lines with respect to N inputs x1,x2, · · · ,xN

⇐⇒ effective number of lines

• must be ≤ 2N (why?)
• finite ‘grouping’ of infinitely-many lines ∈ H
• wish:

P
[∣∣Ein(g)− Eout(g)

∣∣ > ε
]

≤ 2 · effective(N) · exp
(
−2ε2N

)

lines in 2D
N effective(N)

1 2
2 4
3 8
4 14 < 2N

if 1 effective(N) can replace M and

if

2 effective(N)� 2N

learning possible with infinite lines :-)
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Training versus Testing Effective Number of Lines

Fun Time

What is the effective number of lines for five inputs ∈ R2?

1 14 2 16 3 22 4 32

Reference Answer: 3

If you put the inputs roughly around a circle,
you can then pick any consecutive inputs to be
on one side of the line, and the other inputs to
be on the other side. The procedure leads to
effectively 22 kinds of lines, which is much
smaller than 25 = 32. You shall find it difficult
to generate more kinds by varying the inputs,
and we will give a formal proof in future
lectures.

•x1

•x2

•x3

•x4

•x5
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Training versus Testing Effective Number of Hypotheses

Dichotomies: Mini-hypotheses

H = {hypothesis h : X → {×, ◦}}

• call

h(x1,x2, . . . ,xN) = (h(x1),h(x2), . . . ,h(xN)) ∈ {×, ◦}N

a dichotomy: hypothesis ‘limited’ to the eyes of x1,x2, . . . ,xN

• H(x1,x2, . . . ,xN):
all dichotomies ‘implemented’ by H on x1,x2, . . . ,xN

hypotheses H dichotomies H(x1,x2, . . . ,xN)

e.g. all lines in R2 {◦◦◦◦, ◦◦◦×, ◦◦××, . . .}
size possibly infinite upper bounded by 2N

|H(x1,x2, . . . ,xN)|: candidate for replacing M
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Training versus Testing Effective Number of Hypotheses

Growth Function

• |H(x1,x2, . . . ,xN)|: depend on inputs
(x1,x2, . . . ,xN)

• growth function:
remove dependence by taking max of all
possible (x1,x2, . . . ,xN)

mH(N) = max
x1,x2,...,xN∈X

|H(x1,x2, . . . ,xN)|

• finite, upper-bounded by 2N

lines in 2D
N mH(N)

1 2
2 4
3 max(. . . ,6,8)

= 8
4 14 < 2N

how to ‘calculate’ the growth function?
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Training versus Testing Effective Number of Hypotheses

Growth Function for Positive Rays

x1 x2 x3 xN. . .

h(x) = −1 h(x) = +1
a

• X = R (one dimensional)
• H contains h, where each h(x) = sign(x − a) for threshold a
• ‘positive half’ of 1D perceptrons

one dichotomy for a ∈ each spot (xn, xn+1):

mH(N) = N + 1

(N + 1)� 2N when N large!

x1 x2 x3 x4
◦ ◦ ◦ ◦
× ◦ ◦ ◦
× × ◦ ◦
× × × ◦
× × × ×

Hsuan-Tien Lin (NTU CSIE) Machine Learning Foundations 18/27



Training versus Testing Effective Number of Hypotheses

Growth Function for Positive Intervals

x1 x2 x3 xN. . .

h(x) = −1 h(x) = −1h(x) = +1

• X = R (one dimensional)
• H contains h, where each h(x) = +1 iff x ∈ [`, r), −1 otherwise

one dichotomy for each ‘interval kind’

mH(N) =

(
N + 1

2

)
︸ ︷︷ ︸

interval ends in N + 1 spots

+ 1︸︷︷︸
all ×

=
1
2

N2 +
1
2

N + 1

(1
2N2 + 1

2N + 1
)
� 2N when N large!

x1 x2 x3 x4
◦ × × ×
◦ ◦ × ×
◦ ◦ ◦ ×
◦ ◦ ◦ ◦
× ◦ × ×
× ◦ ◦ ×
× ◦ ◦ ◦
× × ◦ ×
× × ◦ ◦
× × × ◦
× × × ×
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Training versus Testing Effective Number of Hypotheses

Growth Function for Convex Sets (1/2)

up

bottom

convex region in blue

up

bottom

non-convex region

• X = R2 (two dimensional)
• H contains h, where h(x) = +1 iff x in a

convex region, −1 otherwise

what is mH(N)?
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Training versus Testing Effective Number of Hypotheses

Growth Function for Convex Sets (2/2)

• one possible set of N inputs:
x1,x2, . . . ,xN on a big circle

• every dichotomy can be implemented
by H using a convex region slightly
extended from contour of positive inputs

mH(N) = 2N

• call those N inputs ‘shattered’ by H

+

+

+

+

+

−

−

−

−

−

up

bottom

mH(N) = 2N ⇐⇒
exists N inputs that can be shattered
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Training versus Testing Effective Number of Hypotheses

Fun Time

Consider positive and negative rays as H, which is equivalent
to the perceptron hypothesis set in 1D. The hypothesis set is
often called ‘decision stump’ to describe the shape of its
hypotheses. What is the growth function mH(N)?

1 N 2 N + 1 3 2N 4 2N

Reference Answer: 3

Two dichotomies when threshold in each of the
N − 1 ‘internal’ spots; two dichotomies for the
all-◦ and all-× cases.
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Training versus Testing Break Point

The Four Growth Functions

• positive rays: mH(N) = N + 1
• positive intervals: mH(N) = 1

2N2 + 1
2N + 1

• convex sets: mH(N) = 2N

• 2D perceptrons: mH(N) < 2N in some cases

what if mH(N) replaces M?

P
[∣∣Ein(g)− Eout(g)

∣∣ > ε
] ?
≤ 2 ·mH(N) · exp

(
−2ε2N

)
polynomial: good; exponential: bad

for 2D or general perceptrons,
mH(N) polynomial?
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Training versus Testing Break Point

Break Point of H
what do we know about 2D perceptrons now?

three inputs: ‘exists’ shatter;
four inputs, ‘for all’ no shatter

if no k inputs can be shattered by H,
call k a break point for H
• mH(k) < 2k

• k + 1, k + 2, k + 3, . . . also break points!
• will study minimum break point k

◦
×

◦
×

2D perceptrons: break point at 4
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Training versus Testing Break Point

The Four Break Points

• positive rays: mH(N) = N + 1 = O(N)
break point at 2

• positive intervals: mH(N) = 1
2N2 + 1

2N + 1 = O(N2)
break point at 3

• convex sets: mH(N) = 2N

no break point
• 2D perceptrons: mH(N) < 2N in some cases

break point at 4

conjecture:
• no break point: mH(N) = 2N (sure!)
• break point k : mH(N) = O(Nk−1)

excited? wait for next lecture :-)
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Training versus Testing Break Point

Fun Time

Consider positive and negative rays as H, which is equivalent
to the perceptron hypothesis set in 1D. As discussed in an
earlier quiz question, the growth function mH(N) = 2N. What is
the minimum break point for H?

1 1 2 2 3 3 4 4

Reference Answer: 3

At k = 3, mH(k) = 6 while 2k = 8.
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Training versus Testing Break Point

Summary
1 When Can Machines Learn?

Lecture 4: Feasibility of Learning

2 Why Can Machines Learn?

Lecture 5: Training versus Testing
Recap and Preview

two questions: Eout(g) ≈ Ein(g), and Ein(g) ≈ 0
Effective Number of Lines

at most 14 through the eye of 4 inputs
Effective Number of Hypotheses

at most mH(N) through the eye of N inputs
Break Point

when mH(N) becomes ‘non-exponential’

• next: mH(N) = poly(N)?
3 How Can Machines Learn?
4 How Can Machines Learn Better?
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