

Lecture 2: Learning to Answer Yes/No

Hsuan-Tien Lin (林軒田) htlin@csie.ntu.edu.tw

Department of Computer Science & Information Engineering

National Taiwan University (國立台灣大學資訊工程系)

Roadmap

1 When Can Machines Learn?

Lecture 1: The Learning Problem

 \mathcal{A} takes \mathcal{D} and \mathcal{H} to get g

Lecture 2: Learning to Answer Yes/No

- Perceptron Hypothesis Set
- Perceptron Learning Algorithm (PLA)
- Guarantee of PLA
- Non-Separable Data
- 2 Why Can Machines Learn?
- **3** How Can Machines Learn?
- 4 How Can Machines Learn Better?

Credit Approval Problem Revisited

what hypothesis set can we use?

Hsuan-Tien Lin (NTU CSIE)

Learning to Answer Yes/No

Perceptron Hypothesis Set

A Simple Hypothesis Set: the 'Perceptron'

age	23 years
annual salary	NTD 1,000,000
year in job	0.5 year
current debt	200,000

• For $\mathbf{x} = (x_1, x_2, \cdots, x_d)$ 'features of customer', compute a weighted 'score' and approve credit if $\sum_{i=1}^d w_i x_i > \text{threshold}$ deny credit if $\sum_{i=1}^d w_i x_i < \text{threshold}$

• $\mathcal{Y}: \{+1(\text{good}), -1(\text{bad})\}, 0 \text{ ignored}--\text{linear formula } h \in \mathcal{H} \text{ are}$ $h(\mathbf{x}) = \text{sign}\left(\left(\sum_{i=1}^{d} w_i x_i\right) - \text{threshold}\right)$

called 'perceptron' hypothesis historically

Hsuan-Tien Lin (NTU CSIE)

Vector Form of Perceptron Hypothesis

$$\begin{aligned} \mathbf{r}(\mathbf{x}) &= \operatorname{sign}\left(\left(\sum_{i=1}^{d} \mathbf{w}_{i} x_{i}\right) - \operatorname{threshold}\right) \\ &= \operatorname{sign}\left(\left(\sum_{i=1}^{d} \mathbf{w}_{i} x_{i}\right) + \underbrace{\left(-\operatorname{threshold}\right)}_{\mathbf{w}_{0}} \cdot \underbrace{\left(+1\right)}_{\mathbf{x}_{0}}\right) \\ &= \operatorname{sign}\left(\sum_{i=0}^{d} \mathbf{w}_{i} x_{i}\right) \\ &= \operatorname{sign}\left(\mathbf{w}^{\mathsf{T}} \mathbf{x}\right) \end{aligned}$$

 each 'tall' w represents a hypothesis h & is multiplied with 'tall' x —will use tall versions to simplify notation

what do perceptrons h 'look like'?

Hsuan-Tien Lin (NTU CSIE)

Perceptron Hypothesis Set

Perceptrons in \mathbb{R}^2 $h(\mathbf{x}) = \operatorname{sign}(w_0 + w_1 x_1 + w_2 x_2)$

- customer features \mathbf{x} : points on the plane (or points in \mathbb{R}^d)
- Iabels y:

- (+1), × (-1)
- hypothesis h: lines (or hyperplanes in ℝ^d)
 —positive on one side of a line, negative on the other side
- · different line classifies customers differently

perceptrons ⇔ linear (binary) classifiers

Hsuan-Tien Lin (NTU CSIE)

Fun Time

Consider using a perceptron to detect spam messages.

Assume that each email is represented by the frequency of keyword occurrence, and output +1 indicates a spam. Which keywords below shall have large positive weights in a **good perceptron** for the task?

- 1 coffee, tea, hamburger, steak
- 2 free, drug, fantastic, deal
- 3 machine, learning, statistics, textbook
- 4 national, Taiwan, university, coursera

Fun Time

Consider using a perceptron to detect spam messages.

Assume that each email is represented by the frequency of keyword occurrence, and output +1 indicates a spam. Which keywords below shall have large positive weights in a **good perceptron** for the task?

- 1 coffee, tea, hamburger, steak
- 2 free, drug, fantastic, deal
- 3 machine, learning, statistics, textbook
- 4 national, Taiwan, university, coursera

Reference Answer: (2)

The occurrence of keywords with positive weights increase the 'spam score', and hence those keywords should often appear in spams.

Select g from \mathcal{H}

 $\mathcal{H} =$ all possible perceptrons, g = ?

- want: $g \approx f$ (hard when f unknown)
- almost necessary: $g \approx f$ on \mathcal{D} , ideally $g(\mathbf{x}_n) = f(\mathbf{x}_n) = y_n$
- difficult: \mathcal{H} is of infinite size
- idea: start from some g₀, and 'correct' its mistakes on D

will represent g_0 by its weight vector \mathbf{w}_0

Perceptron Learning Algorithm start from some \mathbf{w}_0 (say, $\mathbf{0}$), and 'correct' its mistakes on \mathcal{D}

... until no more mistakes return last \mathbf{w} (called $\mathbf{w}_{\mathsf{PLA}}$) as g

That's it! —A fault confessed is half redressed. :-)

Hsuan-Tien Lin (NTU CSIE)

Practical Implementation of PLA

start from some \bm{w}_0 (say, $\bm{0}),$ and 'correct' its mistakes on $\mathcal D$

Cyclic PLA

For *t* = 0, 1, . . .

1 find the next mistake of \mathbf{w}_t called $(\mathbf{x}_{n(t)}, \mathbf{y}_{n(t)})$

sign
$$\left(\mathbf{w}_{t}^{\mathsf{T}}\mathbf{x}_{n(t)}\right) \neq y_{n(t)}$$

correct the mistake by

$$\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + \mathbf{y}_{n(t)} \mathbf{x}_{n(t)}$$

... until a full cycle of not encountering mistakes

next can follow naïve cycle $(1, \dots, N)$ or precomputed random cycle

Hsuan-Tien Lin (NTU CSIE)

Seeing is Believing

worked like a charm with < 20 lines!!

(note: made $x_i \gg x_0 = 1$ for visual purpose)

Hsuan-Tien Lin (NTU CSIE)

Seeing is Believing

worked like a charm with < 20 lines!!

(note: made $x_i \gg x_0 = 1$ for visual purpose)

Hsuan-Tien Lin (NTU CSIE)

Seeing is Believing

worked like a charm with < 20 lines!!

(note: made $x_i \gg x_0 = 1$ for visual purpose)

Hsuan-Tien Lin (NTU CSIE)

Seeing is Believing

worked like a charm with < 20 lines!!

(note: made $x_i \gg x_0 = 1$ for visual purpose)

Hsuan-Tien Lin (NTU CSIE)

Seeing is Believing

worked like a charm with < 20 lines!!

(note: made $x_i \gg x_0 = 1$ for visual purpose)

Hsuan-Tien Lin (NTU CSIE)

Seeing is Believing

worked like a charm with < 20 lines!!

(note: made $x_i \gg x_0 = 1$ for visual purpose)

Hsuan-Tien Lin (NTU CSIE)

Seeing is Believing

worked like a charm with < 20 lines!!

(note: made $x_i \gg x_0 = 1$ for visual purpose)

Hsuan-Tien Lin (NTU CSIE)

Seeing is Believing

worked like a charm with < 20 lines!!

(note: made $x_i \gg x_0 = 1$ for visual purpose)

Hsuan-Tien Lin (NTU CSIE)

Seeing is Believing

worked like a charm with < 20 lines!!

(note: made $x_i \gg x_0 = 1$ for visual purpose)

Hsuan-Tien Lin (NTU CSIE)

Seeing is Believing

worked like a charm with < 20 lines!!

(note: made $x_i \gg x_0 = 1$ for visual purpose)

Hsuan-Tien Lin (NTU CSIE)

Seeing is Believing

worked like a charm with < 20 lines!!

(note: made $x_i \gg x_0 = 1$ for visual purpose)

Hsuan-Tien Lin (NTU CSIE)

Learning to Answer Yes/No

Perceptron Learning Algorithm (PLA)

Some Remaining Issues of PLA 'correct' mistakes on \mathcal{D} until no mistakes

Algorithmic: halt (with no mistake)?

- naïve cyclic: ??
- random cyclic: ??
- other variant: ??

Learning: $g \approx f$?

- on \mathcal{D} , if halt, yes (no mistake)
- outside D: ??
- if not halting: ??

[to be shown] if (...), after 'enough' corrections, any PLA variant halts

Hsuan-Tien Lin (NTU CSIE)

Fun Time

Let's try to think about why PLA may work.

Let n = n(t), according to the rule of PLA below, which formula is true?

$$\operatorname{sign}\left(\mathbf{w}_{t}^{\mathsf{T}}\mathbf{x}_{n}\right)\neq y_{n}, \quad \mathbf{w}_{t+1}\leftarrow\mathbf{w}_{t}+y_{n}\mathbf{x}_{n}$$

Fun Time

Let's try to think about why PLA may work.

Let n = n(t), according to the rule of PLA below, which formula is true?

$$\operatorname{sign}\left(\mathbf{w}_{t}^{\mathsf{T}}\mathbf{x}_{n}\right)\neq y_{n}, \quad \mathbf{w}_{t+1}\leftarrow\mathbf{w}_{t}+y_{n}\mathbf{x}_{n}$$

Reference Answer: (3)

Simply multiply the second part of the rule by $y_n \mathbf{x}_n$. The result shows that the rule somewhat 'tries to correct the mistake.'

Hsuan-Tien Lin (NTU CSIE)

Linear Separability

- if PLA halts (i.e. no more mistakes), (necessary condition) D allows some w to make no mistake
- call such \mathcal{D} linear separable

does PLA always halt?

Learning to Answer Yes/No Guarantee of PLA PLA Fact: \mathbf{w}_t Gets More Aligned with \mathbf{w}_f linear separable $\mathcal{D} \Leftrightarrow$ exists perfect \mathbf{w}_f such that $y_n = \text{sign}(\mathbf{w}_f^T \mathbf{x}_n)$

• **w**_f perfect hence every **x**_n correctly away from line:

$$y_{n(t)}\mathbf{w}_{f}^{\mathsf{T}}\mathbf{x}_{n(t)} \geq \min_{n} y_{n}\mathbf{w}_{f}^{\mathsf{T}}\mathbf{x}_{n} > 0$$

• $\mathbf{w}_{f}^{T}\mathbf{w}_{t}$ \uparrow by updating with any $(\mathbf{x}_{n(t)}, \mathbf{y}_{n(t)})$

$$\mathbf{w}_{f}^{T}\mathbf{w}_{t+1} = \mathbf{w}_{f}^{T}\left(\mathbf{w}_{t} + y_{n(t)}\mathbf{x}_{n(t)}\right)$$

$$\geq \mathbf{w}_{f}^{T}\mathbf{w}_{t} + \min_{n} y_{n}\mathbf{w}_{f}^{T}\mathbf{x}_{n}$$

$$> \mathbf{w}_{f}^{T}\mathbf{w}_{t} + \mathbf{0}.$$

\mathbf{w}_t appears more aligned with \mathbf{w}_f after update (really?)

Hsuan-Tien Lin (NTU CSIE)

PLA Fact: \mathbf{w}_t Does Not Grow Too Fast \mathbf{w}_t changed only when mistake \Leftrightarrow sign $(\mathbf{w}_t^T \mathbf{x}_{n(t)}) \neq y_{n(t)} \Leftrightarrow y_{n(t)} \mathbf{w}_t^T \mathbf{x}_{n(t)} \leq 0$

• mistake 'limits' $\|\mathbf{w}_t\|^2$ growth, even when updating with 'longest' \mathbf{x}_n

$$\begin{aligned} \|\mathbf{w}_{t+1}\|^2 &= \|\mathbf{w}_t + y_{n(t)}\mathbf{x}_{n(t)}\|^2 \\ &= \|\mathbf{w}_t\|^2 + 2y_{n(t)}\mathbf{w}_t^T\mathbf{x}_{n(t)} + \|y_{n(t)}\mathbf{x}_{n(t)}\|^2 \\ &\leq \|\mathbf{w}_t\|^2 + 0 + \|y_{n(t)}\mathbf{x}_{n(t)}\|^2 \\ &\leq \|\mathbf{w}_t\|^2 + \max_n \|y_n\mathbf{x}_n\|^2 \end{aligned}$$

start from $\mathbf{w}_0 = \mathbf{0}$, after T mistake corrections, $\frac{\mathbf{w}_f^T}{\|\mathbf{w}_f\|} \frac{\mathbf{w}_T}{\|\mathbf{w}_T\|} \ge \sqrt{T} \cdot \text{constant}$

Hsuan-Tien Lin (NTU CSIE)

Learning to Answer Yes/No

Guarantee of PLA

Fun Time

Let's upper-bound T, the number of mistakes that PLA 'corrects'.

Define
$$R^2 = \max_n \|\mathbf{x}_n\|^2$$
 $\rho = \min_n y_n \frac{\mathbf{w}_f}{\|\mathbf{w}_f\|} \mathbf{x}_n$

We want to show that $T \leq \Box$. Express the upper bound \Box by the two terms above.

Learning to Answer Yes/No

Guarantee of PLA

Fun Time

Let's upper-bound T, the number of mistakes that PLA 'corrects'.

Define
$$R^2 = \max_n \|\mathbf{x}_n\|^2$$
 $\rho = \min_n y_n \frac{\mathbf{w}_f}{\|\mathbf{w}_f\|} \mathbf{x}_n$

We want to show that $T \leq \Box$. Express the upper bound \Box by the two terms above.

Reference Answer: 2 The maximum value of $\frac{\mathbf{w}_{f}^{T}}{\|\mathbf{w}_{t}\|} \frac{\mathbf{w}_{t}}{\|\mathbf{w}_{t}\|}$ is 1. Since *T* mistake corrections increase the inner product by $\sqrt{T} \cdot \text{constant}$, the maximum number of corrected mistakes is 1/constant².

Hsuan-Tien Lin (NTU CSIE)

Non-Separable Data

More about PLA

Guarantee

as long as linear separable and correct by mistake

- inner product of w_f and w_t grows fast; length of w_t grows slowly
- PLA 'lines' are more and more aligned with $\mathbf{w}_f \Rightarrow$ halts

Pros

simple to implement, fast, works in any dimension d

Cons

• 'assumes' linear separable ${\mathcal D}$ to halt

—property unknown in advance (no need for PLA if we know \mathbf{w}_f)

not fully sure how long halting takes (ρ depends on w_f)
 —though practically fast

what if \mathcal{D} not linear separable?

Hsuan-Tien Lin (NTU CSIE)

Learning with Noisy Data

how to at least get $g \approx f$ on **noisy** \mathcal{D} ?

Hsuan-Tien Lin (NTU CSIE)

Non-Separable Data

Line with Noise Tolerance

• assume 'little' noise: $y_n = f(\mathbf{x}_n)$ usually

• if so, $g \approx f$ on $\mathcal{D} \Leftrightarrow y_n = g(\mathbf{x}_n)$ usually

how about

$$\mathbf{w}_g \leftarrow \underset{\mathbf{w}}{\operatorname{argmin}} \sum_{n=1}^{N} \left[y_n \neq \operatorname{sign}(\mathbf{w}^T \mathbf{x}_n) \right]$$

-NP-hard to solve, unfortunately

can we modify PLA to get an 'approximately good' g? Non-Separable Data

Pocket Algorithm

modify PLA algorithm (black lines) by keeping best weights in pocket

initialize pocket weights \hat{w}

For $t = 0, 1, \cdots$

- **1** find a (random) mistake of \mathbf{w}_t called $(\mathbf{x}_{n(t)}, y_{n(t)})$
- (try to) correct the mistake by

$$\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + y_{n(t)} \mathbf{x}_{n(t)}$$

3 if w_{t+1} makes fewer mistakes than \hat{w} , replace \hat{w} by w_{t+1} ...until enough iterations return \hat{w} (called w_{POCKET}) as g

a simple modification of PLA to find (somewhat) 'best' weights

Hsuan-Tien Lin (NTU CSIE)

Fun Time

Should we use pocket or PLA?

Since we do not know whether \mathcal{D} is linear separable in advance, we may decide to just go with pocket instead of PLA. If \mathcal{D} is actually linear separable, what's the difference between the two?

- **1** pocket on \mathcal{D} is slower than PLA
- 2 pocket on \mathcal{D} is faster than PLA
- **(3)** pocket on \mathcal{D} returns a better g in approximating f than PLA
- 4 pocket on \mathcal{D} returns a worse g in approximating f than PLA

Fun Time

Should we use pocket or PLA?

Since we do not know whether \mathcal{D} is linear separable in advance, we may decide to just go with pocket instead of PLA. If \mathcal{D} is actually linear separable, what's the difference between the two?

- **1** pocket on \mathcal{D} is slower than PLA
- 2 pocket on \mathcal{D} is faster than PLA
- **(3)** pocket on \mathcal{D} returns a better g in approximating f than PLA
- 4 pocket on \mathcal{D} returns a worse g in approximating f than PLA

Reference Answer: (1)

Because pocket need to check whether \mathbf{w}_{t+1} is better than $\hat{\mathbf{w}}$ in each iteration, it is slower than PLA. On linear separable \mathcal{D} , $\mathbf{w}_{\text{POCKET}}$ is the same as \mathbf{w}_{PLA} , both making no mistakes.

Summary

1 When Can Machines Learn?

- 2 Why Can Machines Learn?
- B How Can Machines Learn?
- 4 How Can Machines Learn Better?