
Machine Learning (NTU, Fall 2024) instructor: Hsuan-Tien Lin

Homework #6
RELEASE DATE: 11/18/2024

RED CORRECTION: 11/22/2024 06:00

DUE DATE: 12/02/2024, BEFORE 13:00 on GRADESCOPE

QUESTIONS ARE WELCOMED ON DISCORD (INFORMALLY) OR VIA EMAILS (FORMALLY).

You will use Gradescope to upload your scanned/printed solutions. Any programming language/platform
is allowed.

Any form of cheating, lying, or plagiarism will not be tolerated. Students can get zero scores and/or fail
the class and/or be kicked out of school and/or receive other punishments for those kinds of misconducts.

Discussions on course materials and homework solutions are encouraged. But you should write the final
solutions alone and understand them fully. Books, notes, and Internet resources can be consulted, but
not copied from.

Since everyone needs to write the final solutions alone, there is absolutely no need to lend your homework
solutions and/or source codes to your classmates at any time. In order to maximize the level of fairness
in this class, lending and borrowing homework solutions are both regarded as dishonest behaviors and will
be punished according to the honesty policy.

You should write your solutions in English with the common math notations introduced in class or in the
problems. We do not accept solutions written in any other languages.

This homework set comes with 200 points and 20 bonus points. In general, every
homework set would come with a full credit of 200 points, with some possible bonus
points.

Experimentally, we will allow each grading TA to give up to 2 clarity-bonus points for
every human-graded problem if the TA believes that the answer is delivered with excep-
tional clarity, in addition to being correct. We hope that this encourages everyone to
think about how to express your ideas clearly.

1. (10 points, auto-graded) In this problem, we are going to apply the kernel trick to the perceptron
learning algorithm introduced in Machine Learning Foundations. If we run the perceptron learning
algorithm on the transformed examples {(Φ(xn), yn)}Nn=1, the algorithm updates wt to wt+1 when

the current wt makes a mistake on
(
Φ(xn(t)), yn(t)

)
:

wt+1 ← wt + yn(t)Φ(xn(t))

Because every update is based on one (transformed) example, if we take w0 = 0, we can represent
every wt as a linear combination of {Φ(xn)}Nn=1. We can then maintain the linear combination
coefficients instead of the whole w. Assume that we maintain an N -dimensional vector αt in the
t-th iteration such that

wt =

N∑
n=1

αt,nΦ(xn)

for t = 0, 1, 2, . . .. Set α0 = 0 (N zeros) to match w0 = 0 (d̃+1 zeros). How should αt be updated

to αt+1 when the current wt (represented by αt) makes a mistake on
(
Φ(xn(t)), yn(t)

)
? Choose

the correct answer.

[a] αt+1 ← αt except αt+1,n(t) ← αt,n(t) + yn(t)

[b] αt+1 ← αt except αt+1,n(t) ← αt,n(t) − yn(t)

[c] αt+1 ← αt except αt+1,n(t) ← αt,n(t) + 1

[d] αt+1 ← αt except αt+1,n(t) ← αt,n(t) − 1
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[e] αt+1 ← αt + y

2. (10 points, auto-graded) Consider the soft-margin SVM taught in our class. Assume that after
solving the dual problem, every example is a bounded support vector. That is, the optimal solution
α∗ satisfies α∗

n = C for every example. In this case, there may be multiple solutions for the
optimal b∗ for the primal SVM problem. What is the smallest such b∗? Choose the correct answer.

[a] min
n=1,2,...,N

(
yn − yn

(∑N
m=1 ymα∗

mK(xn, xm)
))

[b] min
n : yn>0

(
1−

(∑N
m=1 ymα∗

mK(xn, xm)
))

[c] max
n : yn>0

(
1−

(∑N
m=1 ymα∗

mK(xn, xm)
))

[d] min
n : yn<0

(
−1−

(∑N
m=1 ymα∗

mK(xn, xm)
))

[e] max
n : yn<0

(
−1−

(∑N
m=1 ymα∗

mK(xn, xm)
))

3. (10 points, auto-graded)In class, we learned about how to extend the non-linear soft-margin SVM
to a squared hinge loss one as follows, which penalizes the margin violation quadratically.

(P2) min
w,b,ξ

1

2
wTw + C

N∑
n=1

ξ2n

subject to yn

(
wTΦ(xn) + b

)
≥ 1− ξn, for n = 1, 2, . . . , N.

The dual problem of (P2) will look like this:

(D2) min
α

1

2

N∑
n=1

N∑
m=1

αnαmynym ·
(
K(xn,xm) +

1

2C
Jn = mK

)
−

N∑
n=1

αn

subject to

N∑
n=1

ynαn = 0

αn ≥ 0, for n = 1, 2, . . . , N,

where the kernel function K(x,x′) = Φ(x)TΦ(x′). After getting the optimal α∗ for (D2), how can
we calculate the optimal ξ∗ for (P2)? Choose the correct answer.

[a] ξ∗ = α∗

[b] ξ∗ = C · 1−α∗

[c] ξ∗ = C · 1+α∗

[d] ξ∗ = 1
2α

∗

[e] ξ∗ = 1
2Cα∗

4. (10 points, auto-graded) For a binary classification task, assume that there are 5 binary classifiers
g1, g2, . . ., g5, and for some P (x, y), the errors made by the 5 classifiers are independent. That is,
the five random variables Jy ̸= g1(x)K, Jy ̸= g2(x)K, . . ., Jy ̸= g5(x)K are independent. Assume that
Eout(gt) = 0.25 for t = 1, 2, . . . , 5, if uniform blending is used to blend the five classifiers to get G
like Page 7 of Lecture 207, what is Eout(G)? Choose the closest answer.

[a] 0.25

[b] 0.20

[c] 0.15

[d] 0.10

[e] 0.05
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5. (20 points, human-graded) Consider the linear soft-margin SVM discussed in class.

(P1) min
w,b,ξ

1

2
wTw + C

N∑
n=1

ξn

subject to yn

(
wTxn + b

)
≥ 1− ξn, for n = 1, 2, . . . , N.

ξn ≥ 0, for n = 1, 2, . . . , N.

The dual problem of (P1) will look like this:

(D1) min
α

1

2

N∑
n=1

N∑
m=1

αnαmynymxT
nxm −

N∑
n=1

αn

subject to

N∑
n=1

ynαn = 0

0 ≤ αn ≤ C, for n = 1, 2, . . . , N,

Recall that we separated the shorter w from b to derive (P1). Nevertheless, Dr. Threshold totally
forgot about this when solving the SVM. That is, Dr. Threshold fed zTn = [1,xT

n ] when solving
(P1) or (D1) instead of xT

n . Assume that the primal-dual solution that Dr. Threshold obtains
from the problem can be represented as (b∗, w̃∗,α∗), where w̃∗ ∈ Rd+1 is a longer vector with
the same dimension as any zn. For simplicity, you can assume that the solution is unique. Let
w∗ = [w̃∗

1 , w̃
∗
2 , . . . , w̃

∗
d]

T . Prove or disprove that (b∗,w∗,α∗) is also an optimal solution of the
original problem (which contains shorter xn) and w̃∗

0 = 0.

6. (20 points, human-graded) The soft-margin SVM that we introduced in class are for binary classi-
fication. Researchers have attempted to extend it to a one-class formulation for outlier detection,
using only examples of yn = +1. In particular, when given {(xn, yn)}Nn=1, the goal of the one-class
formulation is to find a hyperplane such that most of the examples are “normally” on one side of
the hyperplane and some of the outliers are on the other side.

There is a trivial solution to the task above—simply put the hyperplane far far away from any
examples! So the one-class problem is not as easy as it sounds. Anyway, one simple way to extend
the binary-classification SVM to a one-class formulation is to consider an anchor pseudo-example
that is strictly negative. In this problem, we will take 0, the origin of the space, as such an anchor
pseudo-example x0 = 0 with y0 = −1. Because of the specialty of the anchor example, it needs to
satisfy the hard-margin constraint (without any ξ0), while other examples only need to satisfy the
soft-margin constraints. That is, the primal problem is

(P ) min
w,b,ξ

1

2
wTw + C

N∑
n=1

ξn

subject to yn

(
wTΦ(xn) + b

)
≥ 1− ξn, for n = 1, 2, . . . , N.

ξn ≥ 0, for n = 1, 2, . . . , N.

y0

(
wTΦ(x0) + b

)
≥ 1.

Note that y0 = −1 and other yn’s are +1. Derive the Lagrange dual problem of (P ) that involves
only the N Lagrange multipliers of the constraints on (x1, y1), (x2, y2), . . ., (xN , yN ). The dual
problem needs to be expressed in a standard convex quadratic programming form with Q,p,A, c,
like the typical dual problem of the soft-margin SVM.
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7. (20 points, human-graded) For a set of examples {(xn, yn)}Nn=1 with N ≥ 2 and a kernel function
K, consider a hypothesis set that contains

hα,b(x) = sign

(
N∑

n=1

ynαnK(xn,x) + b

)
.

The classifier returned by SVM can be viewed as one such hα,b, where the values of α is determined
by the dual QP solver and b is calculated from the KKT conditions.

In this problem, we will consider the Gaussian kernel K(x,x′) = exp(−γ∥x−x′∥2). We will study

a simpler form of hα,b where α = 1 (the vector of all 1’s) and b = 0. Let us name h1,0 as ĥ for
simplicity. Assume that the distance between any pair of different (xn,xm) in the X -space is no

less than ϵ. Prove that when γ > ln(N−1)
ϵ2 , Ein(ĥ) = 0. That is, when using the Gaussian kernel,

we can “easily” separate the given data set if γ is large enough.

8. (20 points, human-graded) Prove that

K(x, x′) = exp
(
2 cos(x− x′)− 2

)
is a valid kernel for x ∈ R and x′ ∈ R. Note that the kernel has an interesting property of
measuring the similarity between x and x′ periodically. You can use the results from high-school
math, any typical linear algebra textbook, and any facts that has been introduced in class, e.g.
cos(x− x′) = cosx cosx′ + sinx sinx′, or the multi-dimensional Gaussian kernel derived in class is
a valid kernel.

9. (20 points, human-graded) When talking about non-uniform voting in aggregation, we mentioned
that α can be viewed as a weight vector learned from any linear algorithm coupled with the
following transform:

Φ(x) =
(
g1(x), g2(x), · · · , gT (x)

)
.

When studying kernel methods, we mentioned that the kernel is simply a computational short-cut
for the inner product (Φ(x))T (Φ(x′)). In this problem, we mix the two topics together using the
decision stumps as our gt(x).

Assume that the input vectors contain only integers between (including) L and R, where L < R
are both integers. Consider some scaled decision stumps gi,θ(x) = Jxi > θK, where

i ∈ {1, 2, · · · , d},
d is the finite dimensionality of the input space,

θ ∈ {θ1 = L+ 0.5, θ2 = L+ 1.5, . . . , θk = R− 0.5}.

The scaled decision stumps look like a sharper form of the sigmoid function that outputs in [0, 1]

(actually, {0, 1}). Define Φds(x) =

[
g1,θ1(x), g1,θ2(x), . . . , g1,θk(x), . . . , gd,θk(x)

]T
as a column

vector. What is Kds(x,x
′) = (Φds(x))

T (Φds(x
′))? Prove your answer. The TAs will take the

simplicity of your kernel into account during grading.

(Hint: This result shows that aggregation learning with SVMs is possible. Those who are interested
in knowing how perceptrons and decision trees can be used instead of decision stumps during kernel
construction can read the following early work of you-know-who.)

https://www.csie.ntu.edu.tw/~htlin/paper/doc/infkernel.pdf
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10. (20 points, human-graded) For Problems 10 to 12, we are going to experiment with a real-world
data set. We will reuse the mnist.scale dataset at

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass/mnist.scale.bz2

for training. The dataset is originally for multi-class classification. We will study one of the
sub-problems within one-versus-one decomposition: class 3 versus class 7.

Some quadratic programming packages cannot handle such a large problem. We recommend that
you consider the LIBSVM package

http://www.csie.ntu.edu.tw/~cjlin/libsvm/

Regardless of the package that you choose to use, please read the manual of the package carefully
to make sure that you are indeed solving the soft-margin support vector machine taught in class
like the dual formulation below:

min
α

1

2

N∑
n=1

N∑
m=1

αnαmynymK(xn,xm)−
N∑

n=1

αn

subjectto

N∑
n=1

ynαn = 0

0 ≤ αn ≤ C n = 1, . . . , N.

Some practical remarks include

(i) Please tell your chosen package to not automatically scale the data for you, lest you should
change the effective kernel and get different results.

(ii) It is your responsibility to check whether your chosen package solves the designated formu-
lation with enough numerical precision. Please read the manual of your chosen package for
software parameters whose values affect the outcome—any ML practitioner needs to deal with
this kind of added uncertainty.

Consider the polynomial kernelK(xn,xm) = (1+xT
nxm)Q, where Q is the degree of the polynomial.

Among C ∈ {0.1, 1, 10} and Q ∈ {2, 3, 4}, count the number of support vectors of the resulting SVM
classifier. Provide those numbers with a clear table. Which of the (C,Q) combination(s) result in
the smallest number of support vectors? Describe your findings. Please include screenshots of the
first page of your command or code.

11. (20 points, human-graded) Consider the Gaussian kernel K(xn,xm) = exp
(
−γ||xn − xm||2

)
.

Among C ∈ {0.1, 1, 10} and γ ∈ {0.1, 1, 10}, calculate 1/∥w∥, which is the margin, at the op-
timal solution with the kernel trick. Provide those numbers with a clear table. Which of the (C, γ)
combination(s) result in the largest margin? Describe your findings. Please include screenshots of
the first page of your command or code.

12. (20 points, human-graded) Following Problem 11 and consider a validation procedure that randomly
samples 200 examples from the training set for validation and leaves the other examples for training
g−svm. Fix C = 1 and use the validation procedure to choose the best γ among {0.01, 0.1, 1, 10, 100}
according to Eval, evaluated with the 0/1 error. If there is a tie of Eval, choose the smallest γ.
Repeat the procedure 128 times and count the number of times that each γ is selected. Plot a bar
chart of γ versus its selection frequency. Describe your findings. Please include screenshots of the
first page of your command or code.
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13. (Bonus 20 points, human-graded) Derive a simplified Lagrange dual problem of the soft-margin
SVM dual. Is your Lagrange dual problem of the soft-margin SVM dual the same as the soft-margin
SVM primal? Are they “similar” in any sense? Describe your findings.

For your information, this is what chatGPT says.
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