
Machine Learning (NTU, Fall 2024) instructor: Hsuan-Tien Lin

Homework #5
RELEASE DATE: 11/04/2024

DUE DATE: 11/18/2024, BEFORE 13:00 on GRADESCOPE

QUESTIONS ARE WELCOMED ON DISCORD (INFORMALLY) OR VIA EMAILS (FORMALLY).

You will use Gradescope to upload your scanned/printed solutions. Any programming language/platform
is allowed.

Any form of cheating, lying, or plagiarism will not be tolerated. Students can get zero scores and/or fail
the class and/or be kicked out of school and/or receive other punishments for those kinds of misconducts.

Discussions on course materials and homework solutions are encouraged. But you should write the final
solutions alone and understand them fully. Books, notes, and Internet resources can be consulted, but
not copied from.

Since everyone needs to write the final solutions alone, there is absolutely no need to lend your homework
solutions and/or source codes to your classmates at any time. In order to maximize the level of fairness
in this class, lending and borrowing homework solutions are both regarded as dishonest behaviors and will
be punished according to the honesty policy.

You should write your solutions in English with the common math notations introduced in class or in the
problems. We do not accept solutions written in any other languages.

This homework set comes with 200 points and 20 bonus points. In general, every
homework set would come with a full credit of 200 points, with some possible bonus
points.

Experimentally, starting from this homework, we will allow each grading TA to give up
to 2 clarity-bonus points for every human-graded problem if the TA believes that the
answer is delivered with exceptional clarity, in addition to being correct. We hope that
this encourages everyone to think about how to express your ideas clearly.

1. (10 points, auto-graded) Additive smoothing

https://en.wikipedia.org/wiki/Additive_smoothing

is a simple yet useful technique in estimating discrete probabilities. Consider the technique for
estimating the head probability of a coin. Let y1, y2, . . . , yN denotes the flip results from a coin,
with yn = 1 meaning a head and yn = 0 meaning a tail. Additive smoothing adds K “virtual
flips”, with K+ of them being head and the other (K−K+) being tail. Then, the head probability
is estimated by

(
∑N

n=1 yn) +K+

N +K
The estimate can be viewed as the optimal solution of

min
w0∈R

1

N

N∑
n=1

(w0 − yn)
2 +

K

N
Ω(w0),

where Ω(w0) is a “regularizer” to this estimation problem. What is Ω(w0)?

[a] (w0 −K+)
2

[b]
(
w0 − K−K+

K

)2
[c]

(
w0 − K+(K−K+)

K2

)2
[d]

(
w0 − K+

K

)2
[e] (w0 −K +K+)

2

1 of 6

Machine Learning (NTU, Fall 2024) instructor: Hsuan-Tien Lin

2. (10 points, auto-graded) Consider the 1D decision stump model and a binary classification dataset
of N examples {(xn, yn)}Nn=1 that is linearly separable. That is, there exists some 1D decision
stump h that achieves Ein(h) = 0. Consider a decision stump model that returns the midpoint
between the closest positive and negative points as its threshold θ, and decides the best direction
s ∈ {−1,+1} by optimizing Ein. Such a model will always achieve Ein = 0 when the dataset is
linearly separable. If the dataset contains at least two positive examples and at least two negative
examples, which of the following is the tightest upper bound on the leave-one-out error of the
decision stump model?

[a] 0

[b] 1/(2N)

[c] 1/N

[d] 2/N

[e] 1/2

3. (10 points, auto-graded) In Lecture 16, we talked about the probability to fit data perfectly when
the labels are random. For instance, page 6 of Lecture 16 shows that the probability of fitting the
randomly-labeled data perfectly with decision stumps is (2N)/2N . Consider 5 different points in R
as inputs, and a decision stump that minimizes Ein in terms of the 0/1 error to the lowest possible
value. One way to measure the power of the model is to consider five random labels y1, y2, y3, y4,
y5, each in ±1 and generated by i.i.d. fair coin flips, and then compute

Ey1,y2,y3,y4,y5

(
min

s∈{−1,1},θ∈R
Ein(s, θ)

)
,

where hs,θ = s · sign(x− θ) as usual. For a perfect fitting, minEin(s, θ) will be 0; for a less perfect
fitting (when the data is not decision-stump separable), the minimum Ein(s, θ) will be some non-
zero value. The expectation above averages over all 32 possible combinations of y1, y2, y3, y4, y5.
What is the value of the expectation?

[a] 8/80

[b] 9/80

[c] 10/80

[d] 11/80

[e] 12/80

(Note: It can be shown that 1 minus twice the expected value above is the same as the so-called
empirical Rademacher complexity of decision stumps. Rademacher complexity, similar to the VC
dimension, is another tool to measure the complexity of a hypothesis set. If a hypothesis set shatters
some data points, zero Ein can always be achieved and thus Rademacher complexity is 1; if a
hypothesis set cannot shatter some data points, Rademacher complexity provides a soft measure of
how “perfect” the hypothesis set is.)

4. (10 points, auto-graded) Consider a three-example one-dimensional dataset: {(xn, yn)}3n=1 =
{(−4,−1), (0,+1), (4,−1)}, and a polynomial transform Φ(x) = [1, x, x2]T . Apply the hard-margin
SVM on the transformed examples {(Φ(xn), yn)}3n=1 to get the optimal (b∗,w∗) in the transformed
space. What is the margin achieved by the optimal solution (in the Z space)?

[a] 1

[b] 2

[c] 4

[d] 8

[e] 16

(Hint: We encourage you to try to derive this manually to enrich your understanding of the hard-
margin SVM. But given that it is a multiple-choice problem, technically nothing prevents you from
using a QP solver to verify your answer.)

2 of 6

Machine Learning (NTU, Fall 2024) instructor: Hsuan-Tien Lin

5. (20 points, human-graded) Consider a regularization problem of the form

(PR) min
w∈Rd+1

1

N

N∑
n=1

(wTxn − yn)
2 +

λ

N

d∑
i=0

αiw
2
i

with positive constants αi. The typical L2 regularizer can be viewed as a special case of this new
regularizer with α = 1, the vector of 1’s.

Now, consider linear regression with virtual examples. That is, we add K virtual examples
(x̃1, ỹ1), (x̃2, ỹ2) . . . (x̃K , ỹK) to the training dataset, and solve

(PV) min
w∈Rd+1

1

N +K

(
N∑

n=1

(wTxn − yn)
2 +

K∑
k=1

(wT x̃k − ỹk)
2

)
.

Let K = d+ 1, and for k = 1, . . . ,K,

x̃k =

 0, . . . , 0︸ ︷︷ ︸
(k−1) dimensions

,
√
λαk−1, 0, . . . , 0

T

∈ Rd+1

ỹk = 0

Prove that the optimal w∗ obtained by solving (PV) is the same as the optimal solution obtained
by solving (PR).

(Note: The results show that virtual examples, which were claimed to be a possible way to combat
overfitting in Lecture 13, is mathematically related to regularization, another possible way to combat
overfitting discussed in Lecture 14.)

6. (20 points, human-graded) When performing L2-regularization on any twice-differentiable and
convex Ein(w) for some linear model of interest, the optimization problem can be written as:

min
w∈Rd+1

Eaug(w)

subject to Eaug(w) = Ein(w) +
λ

N
||w||22

Suppose w∗ is the minimizer of Ein(w). That is, ∇Ein(w
∗) = 0. Take the second-order Taylor’s

expansion of Ein(w) around w∗, we can approximate Ein(w) by

Ẽin(w) = Ein(w
∗) + (w −w∗)T∇Ein(w

∗)︸ ︷︷ ︸
0

+
1

2
(w −w∗)T H (w −w∗)

where H ∈ R(d+1)×(d+1) is some Hessian matrix. The convexity ensures that H is positive semi-
definite. Then, Eaug(w) can be approximated by

Ẽaug(w) = Ẽin(w) +
λ

N
∥w∥2.

Express the minimizer of Ẽaug(w) as a function of λ, N , H and w∗. List your derivation steps.

(Note: The result demonstrates the difference between the minimizers of Ein and Ẽaug)

3 of 6

Machine Learning (NTU, Fall 2024) instructor: Hsuan-Tien Lin

7. (20 points, human-graded) For N labels y1, y2, . . . , yN generated i.i.d. from some distribution of
mean 0 and variance σ2. Partition the first (N−K) labels to be the training data, and the last K
labels to be the validation data. If we estimate the mean by the “hypothesis” of 0, the expected
validation error

E

(
1

K

N∑
n=N−K+1

(yn − 0)2

)
,

where the expectation is taken on the process of generating N labels, is simply σ2 by the indepen-
dence of the yn’s. Now, assume that we take the average on the first (N−K) examples to estimate
the mean instead. That is,

ȳ =
1

N −K

N−K∑
n=1

yn

What is the expected validation error

E

(
1

K

N∑
n=N−K+1

(yn − ȳ)2

)

in terms of σ2, N and K? List your derivation steps.

8. (20 points, human-graded) For N labels y1, y2, . . . , yN generated i.i.d. from some distribution of a

finite mean. If some w0 is used to estimate the mean, define Ein(w0) =
1
N

∑N
n=1(w0 − yn)

2. It can

be easily shown that w∗
0 = 1

N

∑N
n=1 yn is the optimal solution—it is just a “constant” regression.

Consider a algorithm Aavg that always returns such an optimal solution for any non-empty set of
labels. Prove that for N ≥ 2,

Eloocv(Aavg) =

(
N

N − 1

)2

Ein(w
∗
0).

(Note: The result demonstrates that Ein is a more optimistic estimate than Eloocv.)

9. (20 points, human-graded) Consider a binary classifier g such that

P (g(x) = −1|y = +1) = ϵ+

P (g(x) = +1|y = −1) = ϵ−.

When deploying the classifier to a test distribution of P (y = +1) = P (y = −1) = 1/2, we get
Eout(g) =

1
2ϵ+ + 1

2ϵ−. Now, if we deploy the classifier to another test distribution P (y = −1) = p
instead of 1/2, the Eout(g) under this test distribution will then change to a different value. Note
that under this test distribution, a constant classifier gc that always predicts +1 will suffer from
Eout(gc) = p as it errors on all the negative examples. At what p ∈ [0, 1] will our binary classifier
g be as good as (or as bad as) the constant classifier gc in terms of Eout? Please express p as a
function of ϵ+ and ϵ−. List your derivation steps.

4 of 6

Machine Learning (NTU, Fall 2024) instructor: Hsuan-Tien Lin

10. (20 points, human-graded) Consider L1-regularized logistic regression

wλ = argmin
w

λ

N
∥w∥1 +

1

N

N∑
n=1

ln(1 + exp(−ynwTxn)),

where xn and w are (d+ 1) dimensional vectors, as usual. That is, each x is padded with x0 = 1.
We will use the mnist.scale dataset at

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass/mnist.scale.bz2

for training, and

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass/mnist.scale.t.bz2

for testing (evaluating Eout). The datasets are originally for multi-class classification. We will
study one of the sub-problems within one-versus-one decomposition: class 2 versus class 6.

We call the algorithm for solving the problem above as Aλ. The problem guides you to use
LIBLINEAR (https://www.csie.ntu.edu.tw/~cjlin/liblinear/), a machine learning pack-
aged developed at National Taiwan University, to solve this problem. In addition to using the
default options, what you need to do when running LIBLINEAR are

• set option -s 6, which corresponds to solving L1-regularized logistic regression

• set option -c C, with a parameter value of C calculated from the λ that you want to use; read
README of the software package to figure out how C and your λ should relate to each other.

LIBLINEAR can be called from the command line or from major programming languages like
python. You may find other options of the package useful for some of the problems below. It is up
to you to decide whether to use them or not after checking the README.

After extracting the data of only 2 and 6 from the training and test sets, we will consider the
dataset as a binary classification problem and take the “regression for classification” approach with
regularized logistic regression (see Page 6 of Lecture 10). So please evaluate all errors below with
the 0/1 error.

First select the best λ∗ as
argmin

log10 λ∈{−2,−1,0,1,2,3}
Ein(wλ).

Break the tie, if any, by selecting the largest λ. Note that -s 6 is a randomized solver that may
return different results on different random seeds, even with the same data. Repeat the experiments
above for 1126 times, each with a different random seed. Plot a histogram of Eout(g), where g is
returned by running Aλ with λ∗, over the 1126 experiments. In addition, plot a histogram of the
average number of non-zero components in each g.

If you run LIBLINEAR in the command line, please include screenshots of the commands/results;
if you run LIBLINEAR from any programming language, please include screenshots of the first
page of your code.

11. (20 points, human-graded) Now randomly split the given training examples to two sets: 8000 as
the sub-training set and the rest as the validation set. Run Aλ on only the sub-training set to get
w−

λ (the weight vector within the g− returned), and validate w−
λ with the validation set to get

Eval(w
−
λ). Select the best λ∗ as

argmin
log10 λ∈{−2,−1,0,1,2,3}

Eval(w
−
λ).

Break the tie, if any, by selecting the largest λ. Then, re-run Aλ on the whole training set with λ∗

to get g. Repeat the experiments above for 1126 times, each with a different random seed. Plot
a histogram of Eout(g) over the 1126 experiments. Compare the Eout distribution that you got in
Problem 10 to the Eout distribution that you get in this problem. Describe your findings.

If you run LIBLINEAR in the command line, please include screenshots of the commands/results;
if you run LIBLINEAR from any programming language, please include screenshots of the first
page of your code.

5 of 6

Machine Learning (NTU, Fall 2024) instructor: Hsuan-Tien Lin

12. (20 points, human-graded) Now conduct 3-fold cross validation on the training data. Select the
best λ∗ as

argmin
log10 λ∈{−2,−1,0,1,2,3}

Ecv(Aλ).

Break the tie, if any, by selecting the largest λ. Then, re-run Aλ on the whole training set with λ∗

to get g. Repeat the experiments above for 1126 times, each with a different random seed. Plot
a histogram of Eout(g) over the 1126 experiments. Compare the Eout distribution that you got in
Problem 11 to the Eout distribution that you get in this problem. Describe your findings.

If you run LIBLINEAR in the command line, please include screenshots of the commands/results;
if you run LIBLINEAR from any programming language, please include screenshots of the first
page of your code.

13. (Bonus 20 points, human-graded) The elastic net is a famous regularization scheme based on a
mixture of L1 and L2 regularization. The model solves

min
w∈Rd+1

1

N
∥y −Xw∥22 +

λ1

N
∥w∥1 +

λ2

N
∥w∥22

Because ∥w∥1 is not a smooth function, it is harder to solve it by näıve gradient descent. Instead,
one can consider solving it by the so-called coordinate descent. Each iteration of coordinate descent
updates one of the variables (weights), instead of all variables altogether. The update is based on
the optimal solution on that variable, while keeping other variables fixed. That is, the update is

w
(t+1)
i ← argmin

wi∈R

1

N

N∑
n=1

yn −
∑
j ̸=i

w
(t)
j xn,j − wixn,i

2

+
λ1

N

∑
j ̸=i

|w(t)
j |︸ ︷︷ ︸

constant

+|wi|

+
λ2

N

∑
j ̸=i

(w
(t)
j)2︸ ︷︷ ︸

constant

+w2
i

 .

The update actually has a simple closed-form solution of the form

w
(t+1)
i ← α ·max(β, 0).

where α ∈ {−1,+1} is for possible sign flipping and β ∈ R. The update above says if β ≤ 0, w
(t+1)
i

will be set to 0. This operation demonstrates how elestic net (and similarly L1) achieves sparsity

in its solution. Derive (α, β) as a function of N , xn,j , yn, λ1, λ2, and w
(t)
j .

6 of 6

