Machine Learning for Modern Artificial Intelligence

Hsuan-Tien Lin 林軒田

Dept. of Computer Science and Information Enginnering, National Taiwan University 國立臺灣大學資訊工程學系

December 17, 2020 Keynote talk for International Computer Symposium 2020 & 教育部人工智慧技術及應用人才培育計畫成果發表會

About Me

Professor National Taiwan University

Co-author Learning from Data

Chief Data Science Consultant (former Chief Data Scientist)

Appier Inc.

Appier

Instructor
NTU-Coursera MOOCs
ML Foundations/Techniques

Outline

ML for (Modern) Al

ML Research for Modern Al

ML for Future Al

H.-T. Lin (NTU) ML for Modern Al 2/42

From Intelligence to Artificial Intelligence

intelligence: thinking and acting smartly

- humanly
- rationally

artificial intelligence: computers thinking and acting smartly

- humanly
- rationally

humanly ≈ smartly ≈ rationally —are humans rational? :-)

H.-T. Lin (NTU) ML for Modern AI 3/42

Humanly versus Rationally

What if your self-driving car decides one death is better than two—and that one is you? (The Washington Post http://wpo.st/ZK-51)

You're humming along in your self-driving car, chatting on your iPhone 37 while the machine navigates on its own. Then a swarm of people appears in the street, right in the path of the oncoming vehicle.

Car Acting Humanly

to save my (and passengers') life, stay on track

Car Acting Rationally

avoid the crowd and crash the owner for minimum total loss

which is smarter?
—depending on where I am, maybe? :-)

(Traditional) Artificial Intelligence

Thinking Humanly

cognitive modeling
 —now closer to Psychology than AI

Acting Humanly

- dialog systems
- humanoid robots
- computer vision

Thinking Rationally

 formal logic—now closer to Theoreticians than AI practitioners

Acting Rationally

- recommendation systems
- cleaning robots
- cross-device ad placement

acting humanly or rationally: more academia/industry attentions nowadays

Traditional vs. Modern [My] Definition of Al

Traditional Definition

humanly \approx intelligently \approx rationally

My Definition

intelligently \approx easily is your smart phone 'smart'? :-)

modern artificial intelligence = application intelligence

H.-T. Lin (NTU) ML for Modern AI 6/42

Examples of Application Intelligence

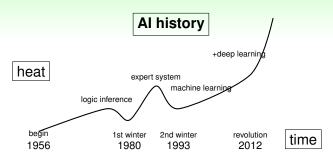
Siri

By Bernard Goldbach [CC BY 2.0]

iRobot

By Yuan-Chou Lo [CC BY-NC-ND 2.0]

Amazon Recommendations


By Kelly Sims [CC BY 2.0]

Vivino

From nordic.businessinsider.com

Al Milestones

- first Al winter: Al cannot solve 'combinatorial explosion' problems
- second Al winter: expert system failed to scale

reason of winters: expectation mismatch

What's Different Now?

More Data

- cheaper storage
- Internet companies

Better Algorithms

- decades of research
- e.g. deep learning

Faster Computation

- cloud computing
- GPU computing

Healthier Mindset

- reasonable wishes
- key breakthroughs

data-enabled AI: mainstream nowadays

H.-T. Lin (NTU) ML for Modern AI 9/42

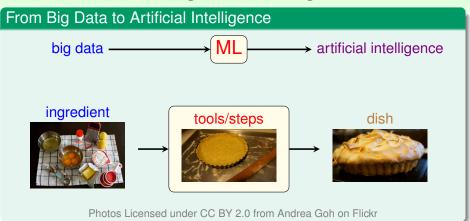
Bigger Data Towards Easier-to-use Al

By deepanker70 on https://pixabay.com/

past

best route by shortest path

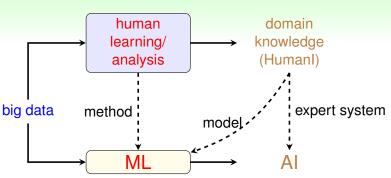
present


best route by current traffic

future

best route by predicted travel time

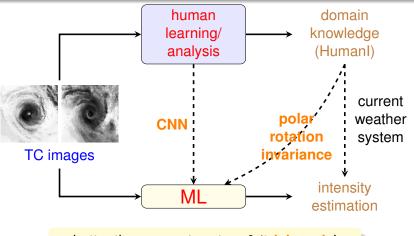
big data can make machine look smarter


Machine Learning Connects Big Data and Al

"cooking" needs many possible tools & procedures

H.-T. Lin (NTU) ML for Modern AI 11/42

ML for Modern Al



- human sometimes faster learner on initial (smaller) data
- industry: black plum is as sweet as white

often important to leverage human learning, especially in the beginning

Application: Tropical Cyclone Intensity Estimation

meteorologists can 'feel' & estimate TC intensity from image

better than current system & 'trial-ready' (Chen et al., KDD '18; Chen et al., Weather & Forecasting '19)

Outline

ML for (Modern) Al

ML Research for Modern Al

ML for Future Al

H.-T. Lin (NTU) ML for Modern Al 14/42

Cost-Sensitive Multiclass Classification

H.-T. Lin (NTU) ML for Modern AI 15/42

What is the Status of the Patient?

By DataBase Center for Life Science; licensed under CC BY 4.0 via Wikimedia Commons

Pictures Licensed under CC BY-SA 3.0 from 1RadicalOne on Wikimedia Commons

- a classification problem
 —grouping 'patients' into different 'status'
 - are all mis-prediction costs equal?

Patient Status Prediction

error measure = society cost

predicted	COVID19	cold	healthy			
COVID19	0	1000	100000			
cold	100	0	3000			
healthy	100	30	0			

- COVID19 mis-predicted as healthy: very high cost
- cold mis-predicted as healthy: high cost
- cold correctly predicted as cold: no cost

human doctors consider costs of decision; how about computer-aided diagnosis?

Our Works

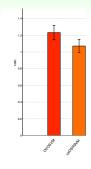
	binary	multiclass
regular	well-studied	well-studied
cost-sensitive	known (Zadrozny et al., 2003)	ongoing (our works, among others)

selected works of ours

- cost-sensitive SVM (Tu and Lin, ICML 2010)
- cost-sensitive one-versus-one (Lin, ACML 2014)
- cost-sensitive deep learning (Chung et al., IJCAI 2016)

why are people not using those cool ML works for their AI? :-)

Issue 1: Where Do Costs Come From?

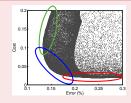

A Real Medical Application: Classifying Bacteria

- by human doctors: different treatments \iff serious costs
- cost matrix averaged from two doctors:

	Ab	Ecoli	HI	KP	LM	Nm	Psa	Spn	Sa	GBS
Ab	0	1	10	7	9	9	5	8	9	1
Ecoli	3	0	10	8	10	10	5	10	10	2
HI	10	10	0	3	2	2	10	1	2	10
KP	7	7	3	0	4	4	6	3	3	8
LM	8	8	2	4	0	5	8	2	1	8
Nm	3	10	9	8	6	0	8	3	6	7
Psa	7	8	10	9	9	7	0	8	9	5
Spn	6	10	7	7	4	4	9	0	4	7
Sa	7	10	6	5	1	3	9	2	0	7
GBS	2	5	10	9	8	6	5	6	8	0

issue 2: is cost-sensitive classification really useful?

Cost-Sensitive vs. Traditional on Bacteria Data


(Jan et al., BIBM 2011)

cost-sensitive better than traditional; but why are people still not using those cool ML works for their AI? :-)

H.-T. Lin (NTU) ML for Modern AI 20/42

Issue 3: Error Rate of Cost-Sensitive Classifiers

The Problem

- cost-sensitive classifier: low cost but high error rate
- traditional classifier: low error rate but high cost
- how can we get the blue classifiers?: low error rate and low cost

cost-and-error-sensitive: more suitable for real-world medical needs

Improved Classifier for Both Cost and Error

(Jan et al., KDD 2012)

Cost	
iris	; ≈
wine	e
glas	ss ≈
vehic	ss ≈ cle ≈ el ○ ent ○ a ○ age ≈ ss ○
VOW	el 🔘
segm	ent O
dna	a ()
satima	age ≈
usp	s O
Z00	
splic	
eco	li ≈
soybe	ean ≈

Error		
	iris wine glass vehicle vowel segment dna satimage usps zoo splice ecoli soybean	00000000000000

now, are people using those cool ML works for their Al? :-)

H.-T. Lin (NTU)

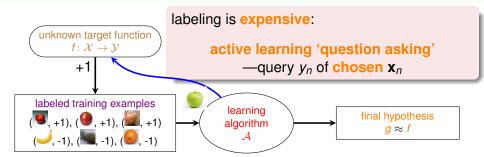
ML for Modern AI

22/4

Lessons Learned from

Research on Cost-Sensitive Multiclass Classification

H7N9-infected


cold-infected

See Page 16 of the Slides for Sources of the Pictures

- more realistic (generic) in academia \(\neq \text{more realistic (feasible) in application} \)
 e.g. the 'cost' of inputting a cost matrix? :-)
- cross-domain collaboration important e.g. getting the 'cost matrix' from domain experts

Active Learning by Learning

Active Learning: Learning by 'Asking'

active: improve hypothesis with fewer labels (hopefully) by asking questions strategically

H.-T. Lin (NTU) ML for Modern Al 25/4.

Pool-Based Active Learning Problem

Given

- labeled pool $\mathcal{D}_l = \left\{ (\text{feature } \mathbf{x}_n), \text{label } y_n \text{ (e.g. lsApple?)} \right\}_{n=1}^N$
- ullet unlabeled pool $\mathcal{D}_u = \left\{ oldsymbol{ ilde{x}_s}
 ight\}_{s=1}^S$

Goal

design an algorithm that iteratively

- **1** strategically query some $\tilde{\mathbf{x}}_s$ to get associated \tilde{y}_s
- 2 move $(\tilde{\mathbf{x}}_s, \tilde{\mathbf{y}}_s)$ from \mathcal{D}_u to \mathcal{D}_l
- 3 learn classifier $g^{(t)}$ from \mathcal{D}_l

and improve test accuracy of $g^{(t)}$ w.r.t #queries

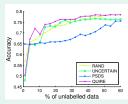
how to query strategically?

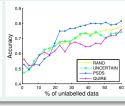
H.-T. Lin (NTU) ML for Modern Al 26/

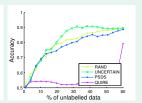
How to Query Strategically?

Strategy 1

ask most confused question

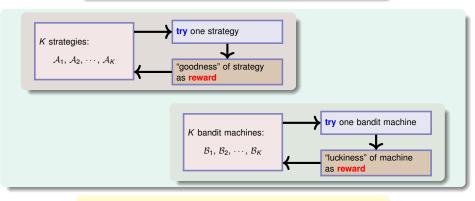

Strategy 2


ask **most frequent** question


Strategy 3

ask most debateful question

choosing one single strategy is non-trivial:

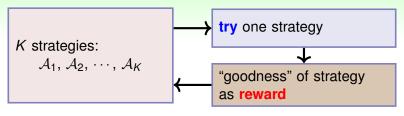


application intelligence: how to choose strategy smartly?

Idea: Trial-and-Reward Like Human

when do humans trial-and-reward? gambling

intelligent choice of strategy


⇒ intelligent choice of bandit machine

H.-T. Lin (NTU)

ML for Modern AI

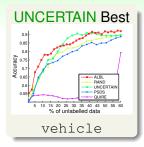
28/42

Active Learning by Learning (Hsu and Lin, AAAI 2015)

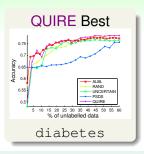
Given: K existing active learning strategies

for t = 1, 2, ..., T

- 1 let some bandit model decide strategy A_k to try
- 2 query the $\tilde{\mathbf{x}}_s$ suggested by A_k , and compute $g^{(t)}$
- 3 evaluate **goodness of** $g^{(t)}$ as **reward** of **trial** to update model

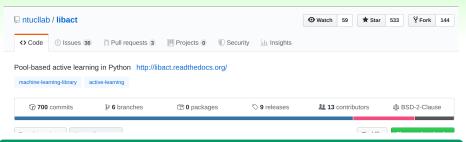

proposed Active Learning by Learning (ALBL): motivated but unrigorous reward design

H.-T. Lin (NTU)


ML for Modern AI

29/4

Comparison with Single Strategies



- no single best strategy for every data set —choosing needed
- proposed ALBL consistently matches the best
 —similar findings across other data sets

'application intelligence' outcome: open-source tool released

(https://github.com/ntucllab/libact)

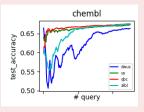
Have We Made Active Learning More Realistic? (1/2)

Yes!

open-source tool libact developed (Yang, 2017)

https://github.com/ntucllab/libact

- including uncertainty, QUIRE, PSDS, ..., and ALBL
- received > 500 stars and continuous issues


"libact is a Python package designed to make active learning easier for real-world users"

H.-T. Lin (NTU) ML for Modern AI 31/42

Have We Made Active Learning More Realistic? (2/2)

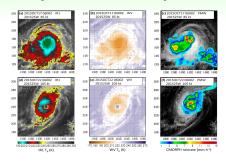
No!

- single-most raised issue: hard to install on Windows/Mac
 because several strategies requires some C packages
- performance in a recent industry project:

- uncertainty sampling often suffices
- ALBL dragged down by bad strategy

"libact is a Python package designed to make active learning easier for real-world users"

Lessons Learned from Research on Active Learning by Learning

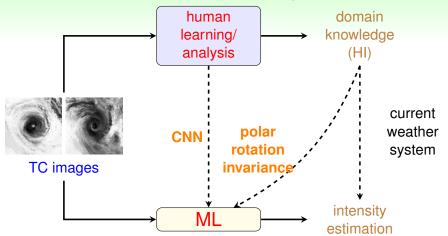

by DFID - UK Department for International Development; licensed under CC BY-SA 2.0 via Wikimedia Commons

- 1 scalability bottleneck of 'application intelligence': choice of methods/models/parameter/...
- 2 think outside of the math box: 'unrigorous' usage may be good enough
- important to be brave yet patient
 - idea: 2012
 - paper: (Hsu and Lin, AAAI 2015); software: (Yang et al., 2017)
- 4 easy-to-use in design \neq easy-to-use in reality

Tropical Cyclone Intensity Estimation

H.-T. Lin (NTU) ML for Modern Al 34/42

Experienced Meteorologists Can 'Feel' and Estimate Tropical Cyclone Intensity from Image


Can ML do the same/better?

- lack of ML-ready datasets
- lack of model that properly utilizes domain knowledge

issues addressed in our latest works (Chen et al., KDD '18; Chen et al., Weather & Forecasting '19)

H.-T. Lin (NTU) ML for Modern AI 35/42

Recall: Flow behind Our Proposed Model

is proposed CNN-TC better than current weather system?

Results

RMS Error

CNN-TC	9.03
SATCON	9.66
AMSU	14.40
ADT	11.75

CNN-TC much better than current weather system (SATCON)

why are people not using this cool ML model? :-)

Lessons Learned from Research on Tropical Cyclone Intensity Estimation

- again, cross-domain collaboration important e.g. even from 'organizing data' to be ML-ready
- not easy to claim production ready —can ML be used for 'unseenly-strong TC'?
- good Al system requires both human and machine learning —still an 'art' to blend the two

H.-T. Lin (NTU) ML for Modern Al 38/42

Outline

ML for (Modern) Al

ML Research for Modern Al

ML for Future AI

H.-T. Lin (NTU) ML for Modern Al 39/42

AI: Now and Next

2010-2015: AI

Al becomes **promising**, e.g.

- initial success of deep learning on ImageNet
- mature tools for SVM (LIBSVM) and others

2016–2020: AI +

Al becomes **competitive**, e.g.

- super-human performance of alphaGo and others
- all big technology companies become Al-first

2021-: AI ×

Al becomes necessary

 "You'll not be replaced by AI, but by humans who know how to use AI"

(Sun, Chief Al Scientist of Appier, 2018)

Needs of ML for Future Al

more creative

win human respect

e.g. Appier's 2018 work on design matching clothes

(Shih et al., AAAI 2018)

more explainable

win human trust

e.g. my students' work on automatic bridge bidding

(Yeh et al., IEE ToG 2018)

more interactive

win human heart

e.g. my student's work (w/ DeepQ) on efficient disease diagonsis

(Peng et al., NeurIPS 2018)

Summary

- ML for (Modern) AI: tools + human knowledge ⇒ easy-to-use application
- ML Research for Modern AI:
 need to be more open-minded
 —in methodology, in collaboration, in KPI
- ML for Future AI: crucial to be 'human-centric'

Thank you! Questions?