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Neural Network
Roadmap
@ Embedding Numerous Features: Kernel Models
@® Combining Predictive Features: Aggregation Models

Lecture 11: Gradient Boosted Decision Tree

aggregating trees from functional gradient and
steepest descent subject to any error measure

@ Distilling Implicit Features: Extraction Models

Lecture 12: Neural Network

e Motivation

e Neural Network Hypothesis

@ Neural Network Learning

e Optimization and Regularization
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Neural Network Motivation

Linear Aggregation of Perceptrons: Pictorial View

B T Xo 1
X1
k T
~ G(x) =sign [ 3 a;sign (wyx)
X | = X =1 S———
9t(x)
two layers of weights:
w; and «
two layers of sign functions:
ing:andin G
L Xd 4
what boundary can G implement? )
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Neural Network Motivation

Logic Operations with Aggregation

jer g AND(91, g2)
G(x) = sign (—1+g1(X)+g2(x))
X0 = m g1(X) = go(X) = +1 (TRUE):
G(x) = +1 (TRUE)
X4 =
W [ —
91 e otherwise:
P —— G(x) = —1 (FALSE)
G = AND(g1, o) )
Xd

OR, NOT can be similarly implemented J
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Neural Network Motivation

Powerfulness and Limitation

" h_ P N_
N REAT
8 perceptrons 16 perceptrons target boundary

‘convex set’ hypotheses implemented: d,. — ~, remember? :-)
powerfulness: enough perceptrons ~ smooth boundary

\ X

XOR(91, 92)
e limitation: XOR not ‘linear separable under ¢(x) = (91(X), g=(x))

how to implement XOR(g1, g2)? J
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Neural Network Motivation

Multi-Layer Perceptrons: Basic Neural Network
non-separable data: can use more transform
how about one more layer of AND transform?

XOR(g1, g2) = OR(AND(—g41, g2), AND(g1, —g2))

Xo =1 +1 +1
X4 S -1 m
X 7 S - I XOR(Q1 92)
08 o BB
Xd

perceptron (simple)
— aggregation of perceptrons (powerful)
= multi-layer perceptrons (more powerful)
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Neural Network Motivation

Connection to Biological Neurons

by UC Regents Davis campus-brainmaps.org.

Licensed under CC BY 3.0 via Wikimedia Commons

+1 +1
X1
up up
X2
p o
&
{
Xd

by Lauris Rubenis.
Licensed under CC BY
2.0 via
https://flic.kr/
p/fkvuzx

by Pedro Ribeiro
Simoes. Licensed
under CC BY 2.0 via
https://flic.kr/
p/adivib

neural network: bio-inspired model

J
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Neural Network Motivation

Fun Time
Let go(x) = +1. Which of the following (ag, a1, a2) allows
2
G(x) = sign (Z atgt(x)) to implement OrR(g1, 92)?
t=0

O (-3,+1,+1)
—-1,+1,+1)
+1,+1,+1)

+3,+1,+1)

—~ o~ o~ —~

2]
©
o
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Neural Network Motivation

Fun Time
Let go(x) = +1. Which of the following (ag, a1, a2) allows
2
G(x) = sign (Z atgt(x)> to implement OrR(g1, 92)?
t=0
O (-3,+1,+1)
O (—1,+1,+1)
O (+1,+1,+1)
O (+3,+1,+1)

Reference Answer: @

You can easily verify with all four possibilities of
(91(x), g2(x)).
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Neural Network Neural Network Hypothesis

Neural Network Hypothesis: Output

Xo=1 41 +1 e OUTPUT: simply a
linear model with

X4
I _~ K ouTtPuT —wTh@) (1)
X2 s =wig=(¢ (X))
¢ any linear model can be
. =
: used—remember? :-)
Xq J—
linear classification !linear regression logistic regression
h(x) = sign(s) h(x) =s h(x) = 6(s)
Xo Xo X0
5 S & s & s
X hx) | x, hx) | x h(x)
Xa Xq Xq
err = 0/1 | err = squared | e = cross-entropy )

will discuss ‘regression’ with squared error J
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Neural Network Neural Network Hypothesis

Neural Network Hypothesis: Transformation

e _| : transformation function
of score (signal) s
e any transformation?

° /: whole network linear &
thus less useful

o _[ : discrete & thus hard to
optimize for w

e popular choice of
transformation: _/~ = tanh(s)

® ‘analog’ approximation of
_: easier to optimize

® somewhat closer to
biological neuron

* not that new! :-)

X=1 +1 +1
R B
Xd _f—
linear
% tanh

tanh(s) = (8 T exn(=s)

= 20(2s) —1

v

will discuss with tanh as transformation func. |
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Neural Network Neural Network Hypothesis

Neural Network Hypothesis

X =1 +1 +1
X
m——

X w tanh @

: tanh

Xd s:(iz) tanh X:gz)
d©-g()-g@)-...-d(L) Neural Network (NNet)

1<e<L layers gle—1)

‘ . P 0) (-1

w,;.) - 0<i<d®" inputs , score s() Z w,./(. Ix(EN),

1<j<d®  outputs

©\
transformed x© = taznh (s7) we<t
/ st fe=L

v

apply x as input layer x(®, go through hidden
layers to get x(9, predict at output layer x{"
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Neural Network Neural Network Hypothesis

Physical Interpretation

X =1 +1 +1

X4
‘m I —— tanh —
Xo NL tanh @
A tanh
tanh
2)

Xd 3:(5 2)

tanh Xé

e each layer: transformation to be learned from data

a0 0 e
Sowylx
o ¢()(x) = tanh m

—whether x ‘matches’ wéight vectors in pattern

NNet: pattern extraction with
layers of connection weights J
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Neural Network Neural Network Hypothesis

Fun Time

How many weights {wlg.f)} are there in a 3-5-1 NNet?
09
e 15
® 20
O 26
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Neural Network Neural Network Hypothesis

Fun Time

How many weights {m§e)} are there in a 3-5-1 NNet?
Q9
0 15
® 20
O 26

Reference Answer: @

There are (3 + 1) x 5 weights in W,.(.1), and
n 0 2
(5+1) x 1 weights in W/.(k).
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Neural Network Neural Network Learning

How to Learn the Weights?
Xo =1 +1 +1

225
tanh
Xd séz) tanh XéZ)

X
- h
v M o m . / B

tanh

* goal: learning all {Wiﬁ.@)} to minimize £, ({W,;.e)})

¢ one hidden layer: simply aggregation of perceptrons
—qgradient boosting to determine hidden neuron one by one

e multiple hidden layers? not easy

* let e, = (¥n — NNet(x,))?:
can apply (stochastic) GD after computing

dén |
()

BWU

ow'd

next: efficient computation of -2 J
{
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Neural Network Neural Network Learning

Computing -8z (Output Layer)

9 Wi1L)

2
=)
en = (yn — NNet(x))* = (yn —si”) 2 = (yn =) w,-(f)x,-(“))
i=0

specially (output layer) generally (1 </ < L)
(0<i<dt") 0<i<dt-D:1<j<d®)
&
8W/'(1L) an/
14
_ Oep 835” _ Oen 63})
835") 0W,.(1L) 831@) GW,](-Z)
L L1 ¢ 1
- 2(n-s) () | = 60

5$L) =-2 (yn — sSL)) , how about others? J
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Neural Network Neural Network Learning

1 (6) __ Oen
Computing ¢; = 250

SEZ+1)
(¢) tanh _(0) V",-(;f“) :
k
(e+1) (0
50 _ 98 _ dZ de, 0s\T1 ox;
R o osy T ox9 9stY

= ) () (o (4)

6}5) can be computed backwards from 6,((”” J
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Neural Network Neural Network Learning

Backpropagation (Backprop
Backprop on NNet

Algorithm

initialize all weights w (’Z)
fort=0,1,..., T
@ stochastic: randomly pick ne€ {1,2,--- , N}

©® forward: compute all x,.(g) with x©©) = x,,
©® backward: compute all 5]@) subject to x(©) = x,,

@ gradient descent: w.(.f) — w.(.g) — x“‘”éw

return guner(X) = ( ~tanh (Z/ /k il (Z/ )))

sometimes @ to @ is (parallelly) done many times and
average(x,“‘”é}f)) taken for update in @ called mini-batch

basic NNet algorithm: backprop to compute
the gradient efficiently J
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Neural Network Neural Network Learning

Fun Time

i oen __ (L) (L_1) oen  __
According to 8W—‘=’(L) =-2 (y,, o ) : (x,. ) when would dwe(L) =07?

i i

0y - SSL)
) X,'(L_1) —0
P) SI(L—1) —0

@ all of the above
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Neural Network Neural Network Learning

Fun Time
According to 26 = —2 (y — s(L)> . (x.(L*”) when would 282 = 0?
aw(D n= S i ow(D !
O y= SSL)
@ x" =0
]
(3] st =0
I

O all of the above

Reference Answer: @

(L=1)
i

Note that x = tanh(s,(L_”) = 0 if and only
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Neural Network Optimization and Regularization

Neural Network Optimization
N
Ein(w) = %Zerr (( --tanh (Z Wj(kz) - tanh (Z W,§1)Xn,/>)> ,yn>
n=1 j i

¢ generally non-convex when multiple hidden layers

® not easy to reach global minimum
e GD/SGD with backprop only gives local minimum

e different initial W,-E-Z) — different local minimum

® somewhat ‘sensitive’ to initial weights
* large weights —> saturate (small gradient)
¢ advice: try some random & small ones

NNet: difficult to optimize,
but practically works J
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Neural Network Optimization and Regularization

VC Dimension of Neural Network Model

roughly, with tanh-like transfer functions:
dvc = O(VD) where V = # of neurons, D = # of weights J

X =1 +1 +1

X1 /
_ . |,
Xo = N

Xd

e pros: can approximate ‘anything’ if enough neurons (V large)
® cons: can overfit if too many neurons J

NNet: watch out for overfitting! )
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Neural Network Optimization and Regularization

One Regularization: Early Stopping

e GD/SGD (backprop) visits
more weight combinations
as t increases

out-of-sample error

model complexity

Error

in-sample error

Hs
p - d,. VC dimension, dy.
< (djc in middle, remember? :-))
-0.2
e smaller t effectively 5 P
decrease dyc &
e better ‘stop in middle’: < 14
early stopping 18 " Fin
10? 10% 10*
iteration, t
when to stop? validation! J
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Neural Network Optimization and Regularization

Summary

o
2]

@ Distilling Implicit Features: Extraction Models

Lecture 12: Neural Network

e Motivation
multi-layer for power with bio. inspirations

o Neural Network Hypothesis

layered pattern extraction
@ Neural Network Learning

backprop to compute gradient efficiently
e Optimization and Regularization

tricks on initialization and early stopping

¢ next: making neural network ‘deeper’
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