Machine Learning Techniques

(機器學習技法)

Lecture 10: Random Forest

Hsuan-Tien Lin (林軒田)

htlin@csie.ntu.edu.tw

Department of Computer Science & Information Engineering

National Taiwan University (國立台灣大學資訊工程系)

Roadmap

- 1 Embedding Numerous Features: Kernel Models
- 2 Combining Predictive Features: Aggregation Models

Lecture 9: Decision Tree

recursive branching (purification) for conditional aggregation of constant hypotheses

Lecture 10: Random Forest

- Random Forest Algorithm
- Out-Of-Bag Estimate
- Random Forest in Action
- 3 Distilling Implicit Features: Extraction Models

Recall: Bagging and Decision Tree

Bagging

function Bag(\mathcal{D} , \mathcal{A}) For t = 1, 2, ..., T

- $\textbf{1} \ \text{request size-} \textit{N'} \ \text{data} \ \tilde{\mathcal{D}}_t \ \text{by} \\ \ \text{bootstrapping with} \ \mathcal{D}$
- ② obtain base g_t by $\mathcal{A}(\tilde{\mathcal{D}}_t)$

 $return G = Uniform(\{g_t\})$

-reduces variance

by voting/averaging

Decision Tree

function DTree(\mathcal{D}) if termination return base g_t else

- 1 learn $b(\mathbf{x})$ and split \mathcal{D} to \mathcal{D}_c by $b(\mathbf{x})$
- 2 build $G_c \leftarrow \mathsf{DTree}(\mathcal{D}_c)$
- 3 return $G(\mathbf{x}) = \sum_{c}^{C} [b(\mathbf{x}) = c] G_c(\mathbf{x})$

—large variance

especially if fully-grown

putting them together?
(i.e. aggregation of aggregation :-))

Random Forest (RF)

random forest (RF) = bagging + fully-grown C&RT decision tree

function RandomForest(D) For t = 1, 2, ..., T

- $\textbf{1} \ \, \text{request size-N'} \ \, \text{data} \ \, \tilde{\mathcal{D}}_t \ \, \text{by} \\ \, \text{bootstrapping with} \ \, \mathcal{D}$
- ② obtain tree g_t by $\mathsf{DTree}(\tilde{\mathcal{D}}_t)$ return $G = \mathsf{Uniform}(\{g_t\})$

function DTree(D) if termination return base g_t else

- 1 learn $b(\mathbf{x})$ and split \mathcal{D} to \mathcal{D}_c by $b(\mathbf{x})$
- 2 build $G_c \leftarrow \mathsf{DTree}(\mathcal{D}_c)$
- 3 return $G(\mathbf{x}) = \sum_{c}^{C} \|b(\mathbf{x}) = c\| G_c(\mathbf{x})$

- inherit pros of C&RT
- eliminate cons of fully-grown tree

Fun Time

Within RF that contains random-combination C&RT trees, which of the following hypothesis is equivalent to each branching function $b(\mathbf{x})$ within the tree?

- a constant
- 2 a decision stump
- 3 a perceptron
- 4 none of the other choices

Fun Time

Within RF that contains random-combination C&RT trees, which of the following hypothesis is equivalent to each branching function $b(\mathbf{x})$ within the tree?

- a constant
- 2 a decision stump
- 3 a perceptron
- 4 none of the other choices

Reference Answer: 3

In each $b(\mathbf{x})$, the input vector \mathbf{x} is first projected by a random vector \mathbf{v} and then thresholded to make a binary decision, which is exactly what a perceptron does.

Bagging Revisited

Bagging

function $Bag(\mathcal{D}, \mathcal{A})$

For
$$t = 1, 2, ..., T$$

- 1 request size-N' data $\hat{\mathcal{D}}_t$ by bootstrapping with \mathcal{D}
- ② obtain base g_t by $\mathcal{A}(\tilde{\mathcal{D}}_t)$

return $G = Uniform(\{g_t\})$

	<i>g</i> ₁	<i>g</i> ₂	<i>g</i> ₃	 д т
(\mathbf{x}_1, y_1)	$\tilde{\mathcal{D}}_1$	*	$ ilde{\mathcal{D}}_3$	$\tilde{\mathcal{D}}_{\mathcal{T}}$
(\mathbf{x}_2, y_2)	*	*	$ ilde{\mathcal{D}}_3$	$ ilde{\mathcal{D}}_{\mathcal{T}}$
(x_3, y_3)	*	$ ilde{\mathcal{D}}_2$	*	$ ilde{\mathcal{D}}_{\mathcal{T}}$
(\mathbf{x}_N, y_N)	$\tilde{\mathcal{D}}_1$	$ ilde{\mathcal{D}}_2$	*	*

 \star in *t*-th column: not used for obtaining g_t —called **out-of-bag (OOB) examples** of g_t

Hsuan-Tien Lin (NTU CSIE)

Number of OOB Examples

OOB (in \star) \iff not sampled after N' drawings

if N' = N

- probability for (\mathbf{x}_n, y_n) to be OOB for g_t : $(1 \frac{1}{N})^N$
- if N large:

$$\left(1 - \frac{1}{N}\right)^N = \frac{1}{\left(\frac{N}{N-1}\right)^N} = \frac{1}{\left(1 + \frac{1}{N-1}\right)^N} \approx \frac{1}{e}$$

OOB size per $g_t \approx \frac{1}{2}N$

OOB versus Validation

OOB

	<i>g</i> ₁	<i>g</i> ₂	<i>g</i> ₃	 д т
(\mathbf{x}_1, y_1)	$\tilde{\mathcal{D}}_1$	*	$ ilde{\mathcal{D}}_3$	$\tilde{\mathcal{D}}_{\mathcal{T}}$
(\mathbf{x}_2, y_2)	*	*	$ ilde{\mathcal{D}}_3$	$\tilde{\mathcal{D}}_{\mathcal{T}}$
$(\mathbf{x}_3, \mathbf{y}_3)$	*	$ ilde{\mathcal{D}}_2$	*	$ \tilde{\mathcal{D}}_{\mathcal{T}} $
(\mathbf{x}_N, y_N)	$\tilde{\mathcal{D}}_1$	*	*	*

Validation

g_1^-	g_2^-	 g_M^-
\mathcal{D}_{train}	\mathcal{D}_{train}	\mathcal{D}_{train}
\mathcal{D}_{val}	\mathcal{D}_{val}	\mathcal{D}_{val}
\mathcal{D}_{val}	\mathcal{D}_{val}	\mathcal{D}_{val}
\mathcal{D}_{train}	\mathcal{D}_{train}	\mathcal{D}_{train}

- \star like \mathcal{D}_{val} : 'enough' random examples unused during training
- use * to validate g_t? easy, but rarely needed
- use \star to validate G? $E_{\text{oob}}(G) = \frac{1}{N} \sum_{n=1}^{N} \operatorname{err}(y_n, G_n^-(\mathbf{x}_n)),$ with G_n^- contains only trees that \mathbf{x}_n is OOB of,

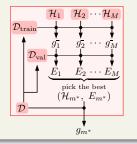
such as
$$G_N^-(\mathbf{x}) = \text{average}(g_2, g_3, g_T)$$

E_{oob}: self-validation of bagging/RF

Model Selection by OOB Error

Previously: by Best E_{val}

$$g_{m^*} = \mathcal{A}_{m^*}(\mathcal{D})$$
 $m^* = \underset{1 \leq m \leq M}{\operatorname{argmin}} E_m$
 $E_m = E_{\text{val}}(\mathcal{A}_m(\mathcal{D}_{\text{train}}))$



RF: by Best Eoob

$$G_{m^*} = \mathsf{RF}_{m^*}(\mathcal{D})$$
 $m^* = \underset{1 \le m \le M}{\operatorname{argmin}} E_m$
 $E_m = E_{oob}(\mathsf{RF}_m(\mathcal{D}))$

- use E_{oob} for self-validation
 —of RF parameters such as d"
- no re-training needed

E_{oob} often **accurate** in practice

Fun Time

For a data set with N = 1126, what is the probability that $(\mathbf{x}_{1126}, y_{1126})$ is not sampled after bootstrapping N' = N samples from the data set?

- 0.113
- 2 0.368
- **3** 0.632
- 4 0.887

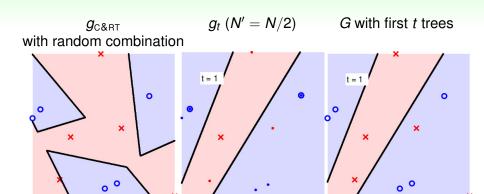
Fun Time

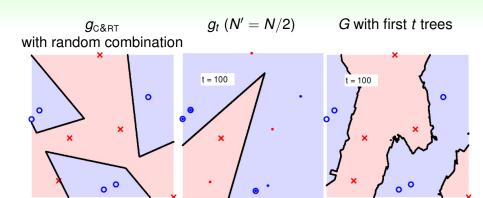
For a data set with N=1126, what is the probability that $(\mathbf{x}_{1126}, y_{1126})$ is not sampled after bootstrapping N'=N samples from the data set?

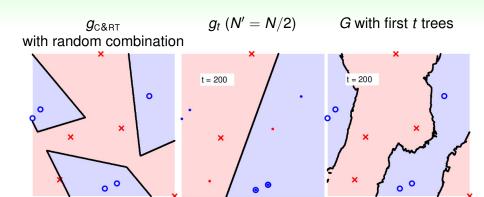
- 0.113
- 2 0.368
- 3 0.632
- 4 0.887

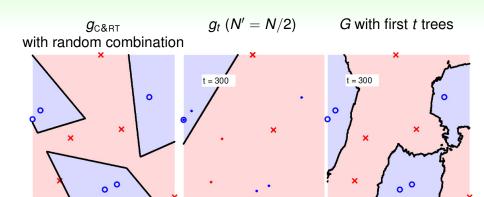
Reference Answer: (2)

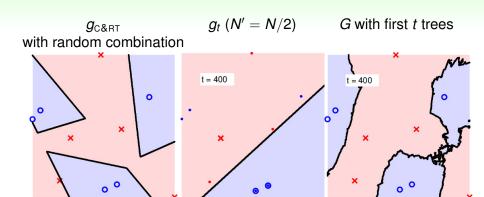
The value of $(1 - \frac{1}{N})^N$ with N = 1126 is about 0.367716, which is close to $\frac{1}{e} = 0.367879$.

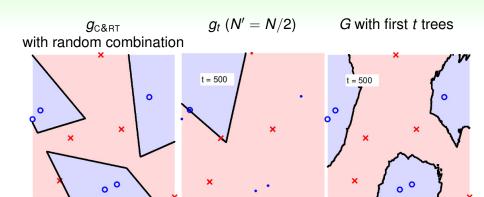


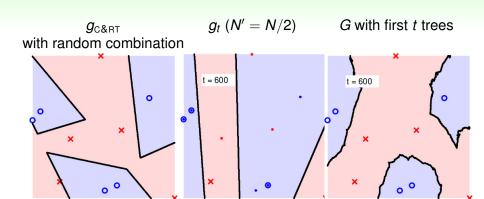


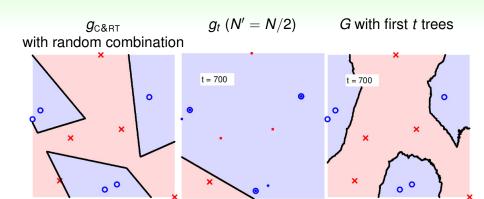


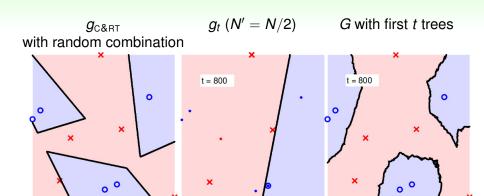


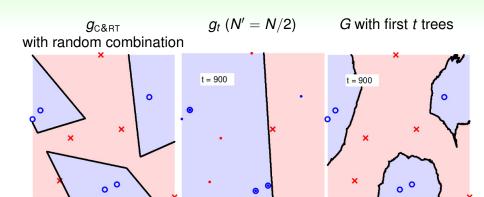


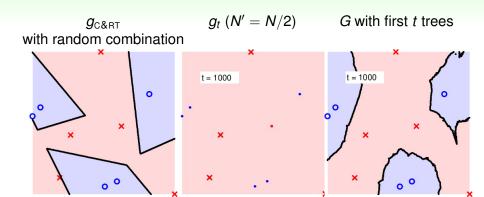




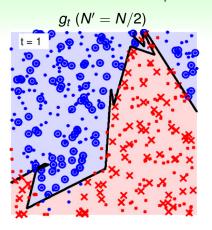


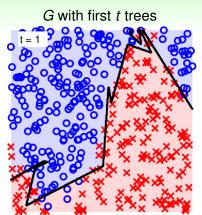


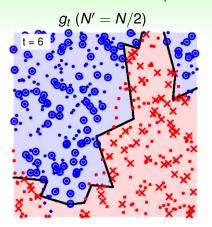


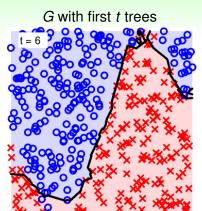


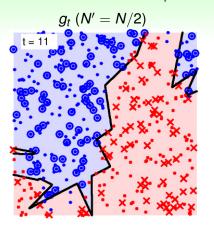
'smooth' and large-margin-like boundary with many trees

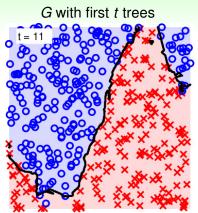


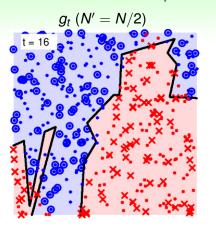


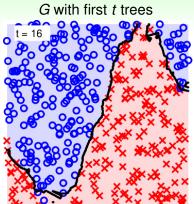


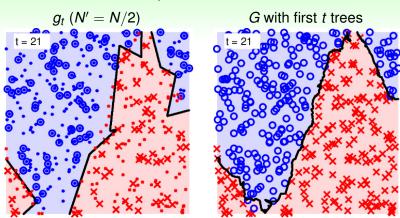




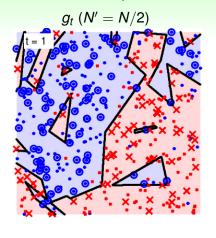




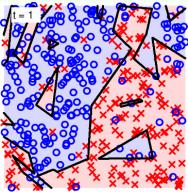


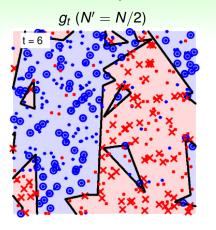


'easy yet robust' nonlinear model

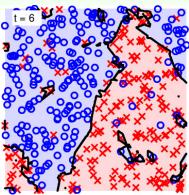


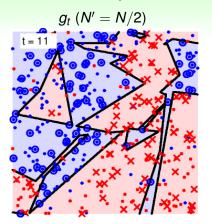
G with first t trees



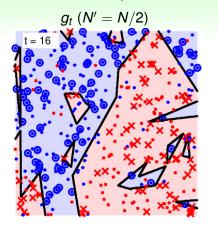


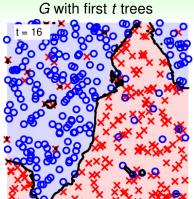
G with first t trees

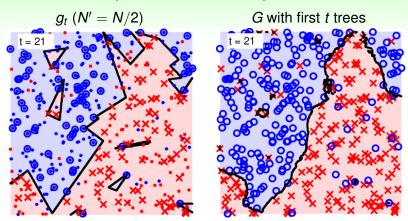




G with first t trees







noise corrected by voting

How Many Trees Needed?

almost every theory: the more, the 'better' assuming good $\bar{g} = \lim_{T \to \infty} G$

Our NTU Experience

- KDDCup 2013 Track 1 (yes, NTU is world champion again! :-)): predicting author-paper relation
- E_{val} of thousands of trees: [0.015, 0.019] depending on seed;
 E_{out} of top 20 teams: [0.014, 0.019]
- decision: take 12000 trees with seed 1

cons of RF: may need lots of trees if the whole random process too unstable —should double-check stability of G to ensure enough trees

Fun Time

Which of the following is **not** the best use of Random Forest?

- 1 train each tree with bootstrapped data
- $oldsymbol{2}$ use E_{oob} to validate the performance
- 3 conduct feature selection with permutation test
- 4 fix the number of trees, T, to the lucky number 1126

Fun Time

Which of the following is **not** the best use of Random Forest?

- 1 train each tree with bootstrapped data
- 2 use E_{oob} to validate the performance
- 3 conduct feature selection with permutation test
- 4 fix the number of trees, T, to the lucky number 1126

Reference Answer: 4

A good value of *T* can depend on the nature of the data and the stability of the whole random process.

Summary

- Embedding Numerous Features: Kernel Models
- 2 Combining Predictive Features: Aggregation Models

Lecture 10: Random Forest

- Random Forest Algorithm
 bag of trees
 (on randomly projected subspaces)
- Out-Of-Bag Estimate self-validation with OOB examples
- Random Forest in Action 'smooth' boundary with many trees
- next: boosted decision trees beyond classification
- 3 Distilling Implicit Features: Extraction Models