Machine Learning Techniques (機器學習技法)

Lecture 8: Adaptive Boosting

Hsuan-Tien Lin (林軒田) htlin@csie.ntu.edu.tw

Department of Computer Science & Information Engineering

National Taiwan University (國立台灣大學資訊工程系)

Roadmap

- 1 Embedding Numerous Features: Kernel Models
- 2 Combining Predictive Features: Aggregation Models

Lecture 7: Blending and Bagging

blending known diverse hypotheses uniformly, linearly, or even non-linearly; obtaining diverse hypotheses from bootstrapped data

Lecture 8: Adaptive Boosting

- Motivation of Boosting
- Diversity by Re-weighting
- Adaptive Boosting Algorithm
- Adaptive Boosting in Action

3 Distilling Implicit Features: Extraction Models

Motivation of Boosting

Apple Recognition Problem

- is this a picture of an apple?
- say, want to teach a class of 6 year olds
- gather photos under CC-BY-2.0 license on Flicker (thanks to the authors below!)

(APAL stands for Apple and Pear Australia Ltd)

Dan Foy https: //flic. kr/p/jNQ55

APAI https: //flic. kr/p/jzP1VB

nachans https: //flic. kr/p/9XD7Aq

APAI https: //flic. kr/p/jzRe4u

adrianbartel

kr/p/bdy2hZ

https:

//flic.

Jo Jakeman https: //flic. kr/p/7jwtGp

ANdrzej cH. https: //flic. kr/p/51DKA8

APAI https: //flic. kr/p/jzPYNr

Stuart Webster https: //flic. kr/p/9C3Ybd

APAI https: //flic. kr/p/jzScif

Hsuan-Tien Lin (NTU CSIE)

Apple Recognition Problem

- is this a picture of an apple?
- say, want to teach a class of 6 year olds
- gather photos under CC-BY-2.0 license on Flicker (thanks to the authors below!)

Mr. Roboto.

Richard North

https: //flic. kr/p/i5BN85

Crystal https: //flic. kr/p/kaPYp

https: //flic. kr/p/bHhPkB

ifh686 https: //flic. kr/p/6viRFH

Richard North

https: //flic. kr/p/d8tGou

skyseeker https: //flic. kr/p/2MvnV

Emilian Robert Vicol https: //flic. kr/p/bpmGXW

Janet Hudson https: //flic. kr/p/70DBbm

Nathaniel Mc-Queen https:

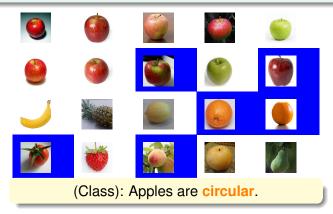
//flic. kr/p/pZv1Mf

Rennett Stowe https: //flic. kr/p/agmnrk

Hsuan-Tien Lin (NTU CSIE)

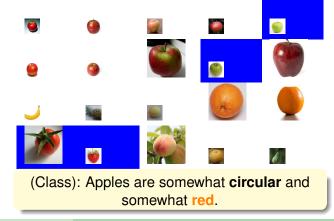
Our Fruit Class Begins

- Teacher: Please look at the pictures of apples and non-apples below. Based on those pictures, how would you describe an apple? Michael?
- Michael: I think apples are circular.



Our Fruit Class Continues

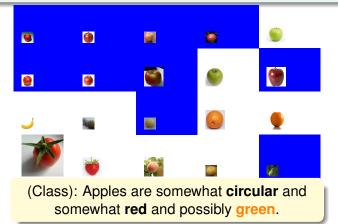
- Teacher: Being circular is a good feature for the apples. However, if you only say circular, you could make several mistakes. What else can we say for an apple? Tina?
- Tina: It looks like apples are red.



Hsuan-Tien Lin (NTU CSIE)

Our Fruit Class Continues More

- Teacher: Yes. Many apples are red. However, you could still make mistakes based on circular and red. Do you have any other suggestions, Joey?
- Joey: Apples could also be green.

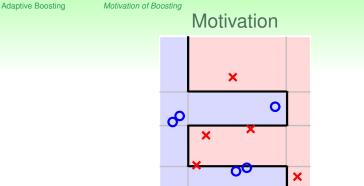


Hsuan-Tien Lin (NTU CSIE)

Our Fruit Class Ends

- Teacher: Yes. It seems that apples might be circular, red, green. But you may confuse them with tomatoes or peaches, right? Any more suggestions, Jessica?
- Jessica: Apples have stems at the top.

(Class): Apples are somewhat **circular**, somewhat **red**, possibly **green**, and may have **stems** at the top.



- students: simple hypotheses g_t (like vertical/horizontal lines)
- (Class): sophisticated hypothesis G (like black curve)
- Teacher: a tactic learning algorithm that directs the students to focus on key examples

next: the 'math' of such an algorithm

Hsuan-Tien Lin (NTU CSIE)

Which of the following can help recognize an apple?

- apples are often circular
- 2 apples are often red or green
- 3 apples often have stems at the top
- 4 all of the above

Which of the following can help recognize an apple?

- apples are often circular
- 2 apples are often red or green
- 3 apples often have stems at the top
- 4 all of the above

Reference Answer: (4)

Congratulations! You have passed first grade. :-)

Diversity by Re-weighting

bo

Bootstrapping as Re-weighting Process

$$\mathcal{D} = \{ (\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), (\mathbf{x}_3, y_3), (\mathbf{x}_4, y_4) \}$$

$$\stackrel{\text{otstrap}}{\Longrightarrow} \quad \tilde{\mathcal{D}}_t = \{ (\mathbf{x}_1, y_1), (\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), (\mathbf{x}_4, y_4) \}$$

weighted E_{in} on \mathcal{D} $E_{in}^{u}(h) = \frac{1}{4} \sum_{n=1}^{4} u_{n}^{(t)} \cdot [\![y_{n} \neq h(\mathbf{x}_{n})]\!]$ $(\mathbf{x}_{1}, y_{1}), u_{1} = 2$ $(\mathbf{x}_{2}, y_{2}), u_{2} = 1$ $(\mathbf{x}_{3}, y_{3}), u_{3} = 0$ $(\mathbf{x}_{4}, y_{4}), u_{4} = 1$

each diverse g_t in bagging: by minimizing bootstrap-weighted error

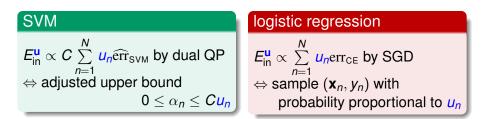
Hsuan-Tien Lin (NTU CSIE)

Diversity by Re-weighting

Weighted Base Algorithm

minimize (regularized)

$$E_{\rm in}^{\rm u}(h) = \frac{1}{N} \sum_{n=1}^{N} u_n \cdot \operatorname{err}(y_n, h(\mathbf{x}_n))$$



example-weighted learning:

extension of class-weighted learning in Lecture 8 of ML Foundations

Hsuan-Tien Lin (NTU CSIE)

Diversity by Re-weighting

Re-weighting for More Diverse Hypothesis

'improving' bagging for binary classification:

how to re-weight for more diverse hypotheses?

$$\begin{array}{lcl} \boldsymbol{g}_t & \leftarrow & \operatorname*{argmin}_{h \in \mathcal{H}} \left(\sum_{n=1}^{N} \boldsymbol{u}_n^{(t)} \left[\left[\boldsymbol{y}_n \neq \boldsymbol{h}(\mathbf{x}_n) \right] \right] \right) \\ \\ \boldsymbol{g}_{t+1} & \leftarrow & \operatorname*{argmin}_{h \in \mathcal{H}} \left(\sum_{n=1}^{N} \boldsymbol{u}_n^{(t+1)} \left[\left[\boldsymbol{y}_n \neq \boldsymbol{h}(\mathbf{x}_n) \right] \right] \right) \end{array}$$

if g_t '**not good**' for $\mathbf{u}^{(t+1)} \Longrightarrow g_t$ -like hypotheses not returned as $g_{t+1} \Longrightarrow g_{t+1}$ diverse from g_t

idea: construct $\mathbf{u}^{(t+1)}$ to make g_t random-like $\frac{\sum_{n=1}^{N} u_n^{(t+1)} \llbracket y_n \neq g_t(\mathbf{x}_n) \rrbracket}{\sum_{n=1}^{N} u_n^{(t+1)}} = \frac{1}{2}$

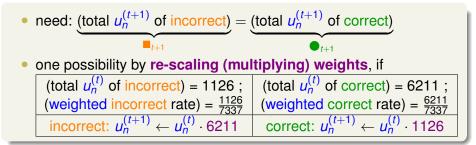
Hsuan-Tien Lin (NTU CSIE)

Adaptive Boosting

Diversity by Re-weighting

'Optimal' Re-weighting want: $\frac{\sum_{n=1}^{N} u_n^{(t+1)} \llbracket y_n \neq g_t(\mathbf{x}_n) \rrbracket}{\sum_{n=1}^{N} u_n^{(t+1)}} = \frac{\blacksquare_{t+1}}{\blacksquare_{t+1} + \bigoplus_{t+1}} = \frac{1}{2}, \text{ where }$

$$\mathbf{I}_{t+1} = \sum_{n=1}^{N} u_n^{(t+1)} \llbracket y_n \neq g_t(\mathbf{x}_n) \rrbracket, \bullet_{t+1} = \sum_{n=1}^{N} u_n^{(t+1)} \llbracket y_n = g_t(\mathbf{x}_n) \rrbracket$$



'optimal' re-weighting under weighted incorrect rate ϵ_t : multiply incorrect $\propto (1 - \epsilon_t)$; multiply correct $\propto \epsilon_t$

Hsuan-Tien Lin (NTU CSIE)

For four examples with $u_n^{(1)} = \frac{1}{4}$ for all examples. If g_1 predicts the first example wrongly but all the other three examples correctly. After the 'optimal' re-weighting, what is $u_1^{(2)}/u_2^{(2)}$?

For four examples with $u_n^{(1)} = \frac{1}{4}$ for all examples. If g_1 predicts the first example wrongly but all the other three examples correctly. After the 'optimal' re-weighting, what is $u_1^{(2)}/u_2^{(2)}$?

Reference Answer: (2)

By 'optimal' re-weighting, u_1 is scaled proportional to $\frac{3}{4}$ and every other u_n is scaled proportional to $\frac{1}{4}$. So example 1 is now three times more important than any other example.

Adaptive Boosting Algorithm

Scaling Factor

'optimal' re-weighting: let $\epsilon_t = \frac{\sum_{n=1}^{N} u_n^{(t)} [y_n \neq g_t(\mathbf{x}_n)]}{\sum_{n=1}^{N} u_n^{(t)}}$,

multiply incorrect $\propto (1 - \epsilon_t)$; multiply correct $\propto \epsilon_t$

define scaling factor $\blacklozenge_t = \sqrt{\frac{1-\epsilon_t}{\epsilon_t}}$

equivalent to optimal re-weighting

•
$$\blacklozenge_t \geq 1$$
 iff $\epsilon_t \leq \frac{1}{2}$

-physical meaning: scale up incorrect; scale down correct

-like what Teacher does

scaling-up incorrect examples leads to diverse hypotheses

Hsuan-Tien Lin (NTU CSIE)

Adaptive Boosting Algorithm

A Preliminary Algorithm

u⁽¹⁾ =?

for t = 1, 2, ..., T

 obtain *g_t* by *A*(*D*, **u**^(t)), where *A* tries to minimize **u**^(t)-weighted 0/1 error

2 update $\mathbf{u}^{(t)}$ to $\mathbf{u}^{(t+1)}$ by $\mathbf{a}_t = \sqrt{\frac{1-\epsilon_t}{\epsilon_t}}$, where ϵ_t = weighted error (incorrect) rate of g_t return $G(\mathbf{x}) =$?

- want g_1 'best' for E_{in} : $u_n^{(1)} = \frac{1}{N}$
- G(**x**):
 - uniform? but g₂ very bad for E_{in} (why? :-))
 - Iinear, non-linear? as you wish

next: a special algorithm to aggregate **linearly on the fly** with theoretical guarantee

Hsuan-Tien Lin (NTU CSIE)

Adaptive Boosting Algorithm

Linear Aggregation on the Fly

- $\mathbf{u}^{(1)} = [\frac{1}{N}, \frac{1}{N}, \cdots, \frac{1}{N}]$ for $t = 1, 2, \dots, T$
 - **1** obtain g_t by $\mathcal{A}(\mathcal{D}, \mathbf{u}^{(t)})$, where ...
 - 2 update $\mathbf{u}^{(t)}$ to $\mathbf{u}^{(t+1)}$ by $\blacklozenge_t = \sqrt{\frac{1-\epsilon_t}{\epsilon_t}}$, where ...

3 compute $\alpha_t = \ln(\blacklozenge_t)$

return
$$G(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t g_t(\mathbf{x})\right)$$

• wish: large α_t for 'good' $g_t \longleftarrow \alpha_t = \text{monotonic}(\blacklozenge_t)$

Adaptive Boosting = weak base learning algorithm \mathcal{A} (Student) + optimal re-weighting factor \blacklozenge_t (Teacher) + 'magic' linear aggregation α_t (Class)

Hsuan-Tien Lin (NTU CSIE)

Adaptive Boosting (AdaBoost) Algorithm

 $\mathbf{u}^{(1)} = [\frac{1}{N}, \frac{1}{N}, \cdots, \frac{1}{N}]$ for $t = 1, 2, \dots, T$

1 obtain g_t by $\mathcal{A}(\mathcal{D}, \mathbf{u}^{(t)})$, where \mathcal{A} tries to minimize $\mathbf{u}^{(t)}$ -weighted 0/1 error

2 update $\mathbf{u}^{(t)}$ to $\mathbf{u}^{(t+1)}$ by

 $\begin{bmatrix} y_n \neq g_t(\mathbf{x}_n) \end{bmatrix} \text{ (incorrect examples): } u_n^{(t+1)} \leftarrow u_n^{(t)} \cdot \blacklozenge_t \\ \begin{bmatrix} y_n = g_t(\mathbf{x}_n) \end{bmatrix} \text{ (correct examples): } u_n^{(t+1)} \leftarrow u_n^{(t)} / \blacklozenge_t \\ \text{where } \blacklozenge_t = \sqrt{\frac{1-\epsilon_t}{\epsilon_t}} \text{ and } \epsilon_t = \frac{\sum_{n=1}^N u_n^{(t)} [y_n \neq g_t(\mathbf{x}_n)]}{\sum_{n=1}^N u_n^{(t)}} \\ \hline \mathbf{s} \text{ compute } \alpha_t = \ln(\blacklozenge_t) \\ \text{return } G(\mathbf{x}) = \text{sign} \left(\sum_{t=1}^T \alpha_t g_t(\mathbf{x}) \right)$

AdaBoost: provable **boosting property**

Hsuan-Tien Lin (NTU CSIE)

Adaptive Boosting Algorithm

Theoretical Guarantee of AdaBoost

From VC bound

$$E_{\text{out}}(G) \leq E_{\text{in}}(G) + O\left(\sqrt{\underbrace{O(d_{\text{VC}}(\mathcal{H}) \cdot T \log T)}_{d_{\text{VC}} \text{ of all possible } G} \cdot \frac{\log N}{N}}\right)$$

- first term can be small: $E_{in}(G) = 0$ after $T = O(\log N)$ iterations if $\epsilon_t \le \epsilon < \frac{1}{2}$ always
- second term can be small: overall d_{vc} grows "slowly" with T

boosting view of AdaBoost:

if A is weak but always slightly better than random ($\epsilon_t \le \epsilon < \frac{1}{2}$), then (AdaBoost+A) can be strong ($E_{in} = 0$ and E_{out} small)

According to $\alpha_t = \ln(\blacklozenge_t)$, and $\blacklozenge_t = \sqrt{\frac{1-\epsilon_t}{\epsilon_t}}$, when would $\alpha_t > 0$? $\epsilon_t < \frac{1}{2}$ $\epsilon_t > \frac{1}{2}$ $\epsilon_t \neq 1$ $\epsilon_t \neq 0$

According to $\alpha_t = \ln(\blacklozenge_t)$, and $\blacklozenge_t = \sqrt{\frac{1-\epsilon_t}{\epsilon_t}}$, when would $\alpha_t > 0$? 1 $\epsilon_t < \frac{1}{2}$ 2 $\epsilon_t > \frac{1}{2}$ 3 $\epsilon_t \neq 1$ 4 $\epsilon_t \neq 0$

Reference Answer: (1)

The math part should be easy for you, and it is interesting to think about the physical meaning: $\alpha_t > 0$ (g_t is useful for G) if and only if the weighted error rate of g_t is better than random!

Decision Stump

want: a 'weak' base learning algorithm \mathcal{A} that minimizes $E_{in}^{u}(h) = \frac{1}{N} \sum_{n=1}^{N} u_n \cdot [[y_n \neq h(\mathbf{x}_n)]]$ a little bit

a popular choice: decision stump

• in ML Foundations Homework 2, remember? :-)

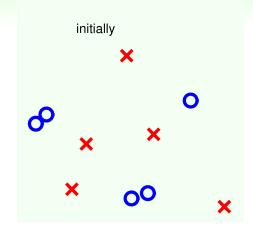
$$h_{\mathbf{s},i,\theta}(\mathbf{x}) = \mathbf{s} \cdot \operatorname{sign}(x_i - \theta)$$

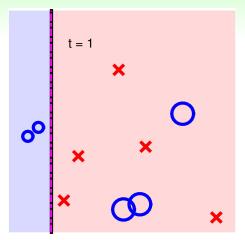
- positive and negative rays on some feature: three parameters (feature *i*, threshold θ, direction s)
- physical meaning: vertical/horizontal lines in 2D
- efficient to optimize: $O(d \cdot N \log N)$ time

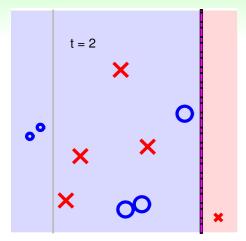
decision stump model: allows efficient minimization of E_{in}^{u} but perhaps too weak to work by itself

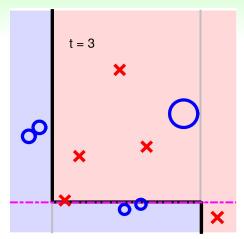
Hsuan-Tien Lin (NTU CSIE)

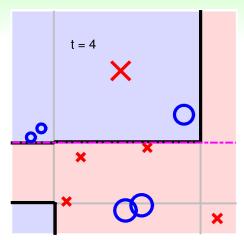
Adaptive Boosting in Action

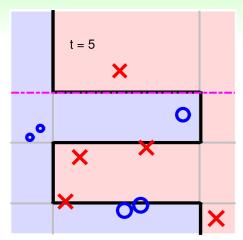




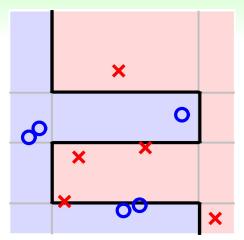








A Simple Data Set

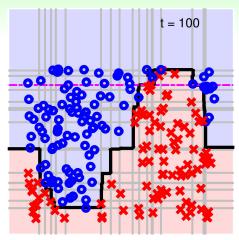


'Teacher'-like algorithm works!

Hsuan-Tien Lin (NTU CSIE)

Adaptive Boosting in Action

A Complicated Data Set



AdaBoost-Stump: non-linear yet efficient

Hsuan-Tien Lin (NTU CSIE)

Adaptive Boosting in Action AdaBoost-Stump in Application

original picture by F.U.S.I.A. assistant and derivative work by Sylenius via Wikimedia Commons

The World's First 'Real-Time' Face Detection Program

- AdaBoost-Stump as core model: linear aggregation of key patches selected out of 162,336 possibilities in 24x24 images —feature selection achieved through AdaBoost-Stump
- modified linear aggregation G to rule out non-face earlier
 —efficiency achieved through modified linear aggregation

AdaBoost-Stump:

efficient feature selection and aggregation

Hsuan-Tien Lin (NTU CSIE)

For a data set of size 9876 that contains $\mathbf{x}_n \in \mathbb{R}^{5566}$, after running AdaBoost-Stump for 1126 iterations, what is the number of distinct features within \mathbf{x} that are effectively used by *G*?

- 1 $0 \le \text{number} \le 1126$
- 2 1126 < number ≤ 5566</p>
- **3** 5566 < number ≤ 9876
- 4 9876 < number</p>

For a data set of size 9876 that contains $\mathbf{x}_n \in \mathbb{R}^{5566}$, after running AdaBoost-Stump for 1126 iterations, what is the number of distinct features within \mathbf{x} that are effectively used by *G*?

- 1 $0 \le number \le 1126$
- 2 1126 < number ≤ 5566</p>
- **3** 5566 < number ≤ 9876
- 4 9876 < number</p>

Reference Answer: (1)

Each decision stump takes only one feature. So 1126 decision stumps need at most 1126 distinct features.

Summary

- 1 Embedding Numerous Features: Kernel Models
- 2 Combining Predictive Features: Aggregation Models

Lecture 8: Adaptive Boosting

- Motivation of Boosting aggregate weak hypotheses for strength
- Diversity by Re-weighting scale up incorrect, scale down correct
- Adaptive Boosting Algorithm two heads are better than one, theoretically
- Adaptive Boosting in Action AdaBoost-Stump useful and efficient
- next: learning conditional aggregation instead of linear one
- Oistilling Implicit Features: Extraction Models