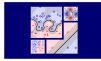
Machine Learning Techniques

(機器學習技法)



Lecture 7: Blending and Bagging

Hsuan-Tien Lin (林軒田)

htlin@csie.ntu.edu.tw

Department of Computer Science & Information Engineering

National Taiwan University (國立台灣大學資訊工程系)

Roadmap

Embedding Numerous Features: Kernel Models

Lecture 5: SVM for Soft Binary Classification

two-level learning for SVM-like sparse model for soft classification

2 Combining Predictive Features: Aggregation Models

Lecture 7: Blending and Bagging

- Motivation of Aggregation
- Uniform Blending
- Linear and Any Blending
- Bagging (Bootstrap Aggregation)
- 3 Distilling Implicit Features: Extraction Models

An Aggregation Story

Your *T* friends g_1, \dots, g_T predicts whether stock will go up as $g_t(\mathbf{x})$.

You can ...

- select the most trust-worthy friend from their usual performance
 —validation!
- mix the predictions from all your friends uniformly
 —let them vote!
- mix the predictions from all your friends non-uniformly
 —let them vote, but give some more ballots
- combine the predictions conditionally
 if [t satisfies some condition] give some ballots to friend t
- •

aggregation models: **mix** or **combine** hypotheses (for better performance)

Aggregation with Math Notations

Your T friends g_1, \dots, g_T predicts whether stock will go up as $g_t(\mathbf{x})$.

• select the most trust-worthy friend from their usual performance $G(\mathbf{x}) = g_{t_*}(\mathbf{x})$ with $t_* = \operatorname{argmin}_{t \in \{1, 2, \dots, T\}} \mathsf{E}_{\mathsf{val}}(g_t^-)$

$$G(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \mathbf{1} \cdot g_t(\mathbf{x})\right)$$

mix the predictions from all your friends non-uniformly

$$G(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t \cdot g_t(\mathbf{x})\right) \text{ with } \alpha_t \geq \mathbf{0}$$

- include select: $\alpha_t = \llbracket E_{\text{val}}(g_t^-) \text{ smallest} \rrbracket$
- include uniformly: $\alpha_t = 1$
- combine the predictions conditionally

$$G(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} q_t(\mathbf{x}) \cdot g_t(\mathbf{x})\right) \text{ with } q_t(\mathbf{x}) \geq 0$$

• include non-uniformly: $q_t(\mathbf{x}) = \alpha_t$

aggregation models: a rich family

Recall: Selection by Validation

$$G(\mathbf{x}) = g_{t_*}(\mathbf{x}) \text{ with } t_* = \mathop{\mathrm{argmin}}_{t \in \{1,2,\cdots,T\}} oldsymbol{\mathcal{E}_{\mathsf{val}}}(g_t^-)$$

- simple and popular
- what if use E_{in}(g_t) instead of E_{val}(g_t⁻)?
 complexity price on d_{VC}, remember? :-)
- need one strong g_t^- to guarantee small E_{val} (and small E_{out})

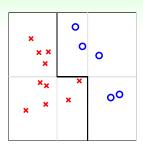
selection:

rely on one strong hypothesis

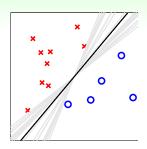
aggregation:

can we do better with many (possibly weaker) hypotheses?

Why Might Aggregation Work?



- mix different weak
 hypotheses uniformly
 —G(x) 'strong'
- aggregation
 ⇒ feature transform (?)



- mix different random-PLA hypotheses uniformly —G(x) 'moderate'
- aggregation ⇒ regularization (?)

proper aggregation ⇒ better performance

Consider three decision stump hypotheses from \mathbb{R} to $\{-1, +1\}$:

$$g_1(x) = \text{sign}(1-x), \ g_2(x) = \text{sign}(1+x), \ g_3(x) = -1.$$
 When mixing the three hypotheses uniformly, what is the resulting $G(x)$?

- 1 $2 \| |x| < 1 \| -1$
- 2 2[|x| > 1] 1
- 3 2[x < -1] 1
- 4 2[x > +1] 1

Consider three decision stump hypotheses from \mathbb{R} to $\{-1, +1\}$: $g_1(x) = \text{sign}(1-x), g_2(x) = \text{sign}(1+x), g_3(x) = -1$. When mixing the three hypotheses uniformly, what is the resulting G(x)?

- 1 $2[|x| \le 1] 1$
- 2 $2[|x| \ge 1] 1$
- 3 $2[x \le -1] 1$
- 4 $2[x \ge +1] 1$

Reference Answer: (1)

The 'region' that gets two positive votes from g_1 and g_2 is $|x| \le 1$, and thus G(x) is positive within the region only. We see that the three decision stumps g_t can be aggregated to form a more sophisticated hypothesis G.

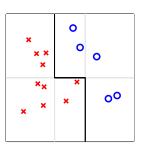
Uniform Blending (Voting) for Classification

uniform blending: known g_t , each with 1 ballot

$$G(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} 1 \cdot \underline{g_t}(\mathbf{x})\right)$$

- same g_t (autocracy):
 as good as one single g_t
- very different g_t (diversity + democracy): majority can correct minority
- similar results with uniform voting for multiclass

$$G(\mathbf{x}) = \operatorname*{argmax}_{1 \leq k \leq K} \sum_{t=1}^{T} \llbracket g_t(\mathbf{x}) = k
bracket$$



how about regression?

Uniform Blending for Regression

$$G(\mathbf{x}) = \frac{1}{T} \sum_{t=1}^{T} g_t(\mathbf{x})$$

- same g_t (autocracy):
 as good as one single g_t
- very different g_t (diversity + democracy): some $g_t(\mathbf{x}) > f(\mathbf{x})$, some $g_t(\mathbf{x}) < f(\mathbf{x})$ \Rightarrow average could be more accurate than individual

diverse hypotheses:

even simple uniform blending can be better than any single hypothesis

Theoretical Analysis of Uniform Blending

$$G(\mathbf{x}) = \frac{1}{T} \sum_{t=1}^{T} g_t(\mathbf{x})$$

$$avg ((g_t(x) - f(x))^2) = avg (g_t^2 - 2g_t f + f^2)$$

$$= avg (g_t^2) - 2Gf + f^2$$

$$= avg (g_t^2) - G^2 + (G - f)^2$$

$$= avg (g_t^2) - 2G^2 + G^2 + (G - f)^2$$

$$= avg (g_t^2 - 2g_t G + G^2) + (G - f)^2$$

$$= avg ((g_t - G)^2) + (G - f)^2$$

$$\operatorname{\mathsf{avg}} \left(\mathsf{E}_{\operatorname{\mathsf{out}}}(g_t) \right) \ = \ \operatorname{\mathsf{avg}} \left(\mathbb{E} (g_t - G)^2 \right) + \mathsf{E}_{\operatorname{\mathsf{out}}}(G)$$
 $\geq \ + \mathsf{E}_{\operatorname{\mathsf{out}}}(G)$

Some Special gt

consider a **virtual** iterative process that for t = 1, 2, ..., T

- 1 request size-N data \mathcal{D}_t from P^N (i.i.d.)
- 2 obtain g_t by $\mathcal{A}(\mathcal{D}_t)$

$$\bar{g} = \lim_{T \to \infty} G = \lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} g_t = \mathbb{E} \mathcal{A}(\mathcal{D})$$

$$\operatorname{avg}\left(E_{\operatorname{out}}(g_t)\right) = \operatorname{avg}\left(\mathbb{E}(g_t - \bar{g})^2\right) + E_{\operatorname{out}}(\bar{g})$$

expected performance of A = expected deviation to consensus +performance of consensus

- · performance of consensus: called bias
- expected deviation to consensus: called variance

uniform blending:

reduces variance for more stable performance

Consider applying uniform blending $G(\mathbf{x}) = \frac{1}{T} \sum_{t=1}^{T} g_t(\mathbf{x})$ on linear regression hypotheses $g_t(\mathbf{x}) = \text{innerprod}(\mathbf{w}_t, \mathbf{x})$. Which of the following property best describes the resulting $G(\mathbf{x})$?

- a constant function of x
- 2 a linear function of x
- a quadratic function of x
- 4 none of the other choices

Consider applying uniform blending $G(\mathbf{x}) = \frac{1}{T} \sum_{t=1}^{T} g_t(\mathbf{x})$ on linear regression hypotheses $g_t(\mathbf{x}) = \text{innerprod}(\mathbf{w}_t, \mathbf{x})$. Which of the following property best describes the resulting $G(\mathbf{x})$?

- a constant function of x
- 2 a linear function of x
- a quadratic function of x
- 4 none of the other choices

Reference Answer: (2)

$$G(\mathbf{x}) = \text{innerprod}\left(\frac{1}{T}\sum_{t=1}^{T}\mathbf{w}_t, \mathbf{x}\right)$$

which is clearly a linear function of \mathbf{x} . Note that we write 'innerprod' instead of the usual 'transpose' notation to avoid symbol conflict with T (number of hypotheses).

Linear Blending

linear blending: known g_t , each to be given α_t ballot

$$G(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t \cdot g_t(\mathbf{x})\right) \text{ with } \alpha_t \geq 0$$

computing 'good' α_t : $\min_{\alpha \ge 0} E_{in}(\alpha)$

linear blending for regression

$$\min_{\alpha_t \geq 0} \frac{1}{N} \sum_{n=1}^{N} \left(y_n - \sum_{t=1}^{T} \alpha_t g_t(\mathbf{x}_n) \right)^2$$

LinReg + transformation

$$\min_{\alpha_t \geq 0} \frac{1}{N} \sum_{n=1}^{N} \left(y_n - \sum_{t=1}^{T} \alpha_t g_t(\mathbf{x}_n) \right)^2 \qquad \min_{\mathbf{w}_i} \frac{1}{N} \sum_{n=1}^{N} \left(y_n - \sum_{i=1}^{\tilde{\mathbf{d}}} \mathbf{w}_i \phi_i(\mathbf{x}_n) \right)^2$$

like two-level learning, remember? :-)

linear blending = LinModel + hypotheses as transform + constraints

Constraint on α_t

linear blending = LinModel + hypotheses as transform + constraints:

$$\min_{\alpha_t \ge 0} \frac{1}{N} \sum_{n=1}^{N} \operatorname{err} \left(y_n, \sum_{t=1}^{T} \alpha_t \mathbf{g}_t(\mathbf{x}_n) \right)$$

linear blending for binary classification

if
$$\alpha_t < 0 \implies \alpha_t g_t(\mathbf{x}) = |\alpha_t| (-g_t(\mathbf{x}))$$

- negative α_t for $g_t \equiv$ positive $|\alpha_t|$ for $-g_t$
- if you have a stock up/down classifier with 99% error, tell me! :-)

in practice, often

linear blending = LinModel + hypotheses as transform + constraints

Linear Blending versus Selection

in practice, often

$$g_1 \in \mathcal{H}_1, g_2 \in \mathcal{H}_2, \dots, g_T \in \mathcal{H}_T$$

by minimum $E_{\rm in}$

- recall: selection by minimum E_{in}
 - —best of best, paying $d_{VC} \left(\bigcup_{t=1}^{T} \mathcal{H}_{t} \right)$
- recall: linear blending includes selection as special case —by setting $\alpha_t = \llbracket \textit{E}_{\text{val}}(g_t^-) \text{ smallest} \rrbracket$
- complexity price of linear blending with E_{in} (aggregation of best):

$$\geq d_{VC} \left(\bigcup_{t=1}^{T} \mathcal{H}_{t} \right)$$

like selection, blending practically done with $(E_{\text{val}} \text{ instead of } E_{\text{in}}) + (g_t^- \text{ from minimum } E_{\text{train}})$

Any Blending

Given
$$g_1^-$$
, g_2^- , ..., g_T^- from $\mathcal{D}_{\text{train}}$, transform (\mathbf{x}_n, y_n) in \mathcal{D}_{val} to $(\mathbf{z}_n = \mathbf{\Phi}^-(\mathbf{x}_n), y_n)$, where $\mathbf{\Phi}^-(\mathbf{x}) = (g_1^-(\mathbf{x}), \dots, g_T^-(\mathbf{x}))$

Linear Blending

- 1 compute α = LinearModel $(\{(\mathbf{z}_n, y_n)\})$
- 2 return $G_{LINB}(\mathbf{x}) = \frac{LinearHypothesis_{\alpha}(\Phi(\mathbf{x}))}{}$

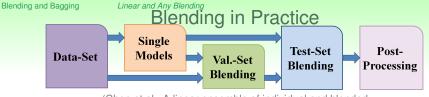
Any Blending (Stacking)

- ① compute \tilde{g} = AnyModel $(\{(\mathbf{z}_n, y_n)\})$
- 2 return $G_{ANYB}(\mathbf{x}) = \tilde{g}(\mathbf{\Phi}(\mathbf{x})),$

where
$$\Phi(\mathbf{x}) = (g_1(\mathbf{x}), \dots, g_T(\mathbf{x}))$$

any blending:

- powerful, achieves conditional blending
- but danger of overfitting, as always :-(



(Chen et al., A linear ensemble of individual and blended models for music rating prediction, 2012)

KDDCup 2011 Track 1: World Champion Solution by NTU

- validation set blending: a special any blending model
 - E_{test} (squared): 519.45 \Longrightarrow 456.24
 - —helped **secure the lead** in last two weeks
- ullet test set blending: linear blending using $ilde{\mathcal{E}}_{test}$

 E_{test} (squared): $456.24 \Longrightarrow 442.06$

—helped turn the tables in last hour

blending 'useful' in practice, despite the computational burden

Consider three decision stump hypotheses from \mathbb{R} to $\{-1, +1\}$:

 $g_1(x) = \text{sign}(1-x), g_2(x) = \text{sign}(1+x), g_3(x) = -1$. When x = 0, what is the resulting $\Phi(x) = (g_1(x), g_2(x), g_3(x))$ used in the returned hypothesis of linear/any blending?

- (+1,+1,+1)
- (+1,+1,-1)
- (+1,-1,-1)
- (-1,-1,-1)

Consider three decision stump hypotheses from \mathbb{R} to $\{-1, +1\}$:

 $g_1(x) = \text{sign}(1-x), g_2(x) = \text{sign}(1+x), g_3(x) = -1.$ When x = 0, what is the resulting $\Phi(x) = (g_1(x), g_2(x), g_3(x))$ used in the returned hypothesis of linear/any blending?

- (+1, +1, +1)
- (+1,+1,-1)
- (+1,-1,-1)
- (-1,-1,-1)

Reference Answer: (2)

Too easy? :-)

What We Have Done

blending: aggregate after getting g_t ; learning: aggregate as well as getting g_t

aggregation type	blending	learning
uniform	voting/averaging	?
non-uniform	linear	?
conditional	stacking	?

learning g_t for uniform aggregation: diversity important

- diversity by different models: $g_1 \in \mathcal{H}_1, g_2 \in \mathcal{H}_2, \dots, g_T \in \mathcal{H}_T$
- diversity by different parameters: GD with $\eta = 0.001, 0.01, \dots, 10$
- diversity by algorithmic randomness: random PLA with different random seeds
- diversity by data randomness: within-cross-validation hypotheses g_{ν}^{-}

next: diversity by data randomness without g

Revisit of Bias-Variance

```
expected performance of \mathcal{A}= expected deviation to consensus + performance of consensus consensus \bar{g}= expected g_t from \mathcal{D}_t \sim P^N
```

- consensus more stable than direct $\mathcal{A}(\mathcal{D})$, but comes from many more \mathcal{D}_t than the \mathcal{D} on hand
- want: approximate \bar{g} by
 - finite (large) T
 - approximate $g_t = \mathcal{A}(\mathcal{D}_t)$ from $\mathcal{D}_t \sim P^N$ using only \mathcal{D}

bootstrapping: a statistical tool that re-samples from \mathcal{D} to 'simulate' \mathcal{D}_t

bootstrapping

bootstrap sample $\tilde{\mathcal{D}}_t$: re-sample N examples from \mathcal{D} uniformly with replacement—can also use arbitrary N' instead of original N

virtual aggregation

consider a **virtual** iterative process that for t = 1, 2, ..., T

- 1 request size-N data \mathcal{D}_t from P^N (i.i.d.)
- ② obtain g_t by $\mathcal{A}(\mathcal{D}_t)$
 - $G = Uniform(\{g_t\})$

bootstrap aggregation

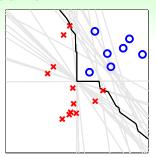
consider a **physical** iterative process that for t = 1, 2, ..., T

- 1 request size-N' data $\tilde{\mathcal{D}}_t$ from bootstrapping
- ② obtain g_t by $\mathcal{A}(\tilde{\mathcal{D}}_t)$

 $G = \mathsf{Uniform}(\{g_t\})$

bootstrap aggregation (BAGging): a simple **meta algorithm** on top of **base algorithm** A

Bagging Pocket in Action



 $T_{ exttt{POCKET}} = 1000; \, T_{ exttt{BAG}} = 25$

- very diverse g_t from bagging
- proper non-linear boundary after aggregating binary classifiers

bagging works reasonably well if base algorithm sensitive to data randomness

When using bootstrapping to re-sample N examples $\tilde{\mathcal{D}}_t$ from a data set \mathcal{D} with N examples, what is the probability of getting $\tilde{\mathcal{D}}_t$ exactly the same as \mathcal{D} ?

- $0 / N^N = 0$
- **2** 1 $/N^N$
- **4** $N^N/N^N = 1$

When using bootstrapping to re-sample N examples $\tilde{\mathcal{D}}_t$ from a data set \mathcal{D} with N examples, what is the probability of getting $\tilde{\mathcal{D}}_t$ exactly the same as \mathcal{D} ?

- $0 / N^N = 0$
- $2 1 / N^N$
- $3 N! / N^N$
- **4** $N^N/N^N = 1$

Reference Answer: (3)

Consider re-sampling in an ordered manner for N steps. Then there are (N^N) possible outcomes $\tilde{\mathcal{D}}_t$, each with equal probability. Most importantly, (N!) of the outcomes are permutations of the original \mathcal{D} , and thus the answer.

Summary

- 1 Embedding Numerous Features: Kernel Models
- Combining Predictive Features: Aggregation Models

Lecture 7: Blending and Bagging

- Motivation of Aggregation
- Uniform Blending
- Linear and Any Blending
- Bagging (Bootstrap Aggregation)
- next: getting more diverse hypotheses to make G strong
- 3 Distilling Implicit Features: Extraction Models