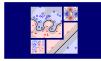
Machine Learning Techniques

(機器學習技法)



Lecture 5: SVM for Soft Binary Classification

Hsuan-Tien Lin (林軒田)

htlin@csie.ntu.edu.tw

Department of Computer Science & Information Engineering

National Taiwan University (國立台灣大學資訊工程系)

Roadmap

Embedding Numerous Features: Kernel Models

Lecture 4: Soft-Margin Support Vector Machine

allow some margin violations ξ_n while penalizing them by C; equivalent to upper-bounding α_n by C

Lecture 5: SVM for Soft Binary Classification

- Soft-Margin SVM as Regularized Model
- SVM versus Logistic Regression
- SVM for Soft Binary Classification
- 2 Combining Predictive Features: Aggregation Models
- 3 Distilling Implicit Features: Extraction Models

Hard-Margin Primal

$$\min_{b,\mathbf{w}} \quad \frac{1}{2}\mathbf{w}^T\mathbf{w}$$

s.t.
$$y_n(\mathbf{w}^T\mathbf{z}_n + b) \geq 1$$

Soft-Margin Primal

$$\min_{b,\mathbf{w},\boldsymbol{\xi}} \qquad \frac{1}{2}\mathbf{w}^T\mathbf{w} + \frac{C}{C}\sum_{n=1}^{N} \xi_n$$

s.t.
$$y_n(\mathbf{w}^T\mathbf{z}_n + b) \ge 1 - \xi_n, \xi_n \ge 0$$

Hard-Margin Dual

$$\min_{\alpha} \frac{1}{2} \alpha^{T} Q \alpha - \mathbf{1}^{T} \alpha$$
s.t.
$$\mathbf{y}^{T} \alpha = 0$$

$0 < \alpha_n$

Soft-Margin Dual

$$\min_{\alpha} \frac{1}{2} \alpha^{T} Q \alpha - \mathbf{1}^{T} \alpha$$
s.t.
$$\mathbf{y}^{T} \alpha = 0$$

 $0 < \alpha_n < C$

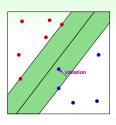
soft-margin preferred in practice; linear: LIBLINEAR: non-linear: LIBSVM

Slack Variables ξ_n

- record 'margin violation' by ξ_n
- penalize with margin violation

$$\min_{b,\mathbf{w},\xi} \qquad \frac{1}{2}\mathbf{w}^{\mathsf{T}}\mathbf{w} + \mathbf{C} \cdot \sum_{n=1}^{N} \xi_n$$

s.t.
$$y_n(\mathbf{w}^T\mathbf{z}_n + b) \ge 1 - \xi_n$$
 and $\xi_n \ge 0$ for all n



on any
$$(b, \mathbf{w})$$
, $\xi_n =$ margin violation $= \max(1 - y_n(\mathbf{w}^T \mathbf{z}_n + b), 0)$

- (\mathbf{x}_n, y_n) violating margin: $\xi_n = 1 y_n(\mathbf{w}^T \mathbf{z}_n + b)$
- $(\mathbf{x}_n, \mathbf{y}_n)$ not violating margin: $\xi_n = 0$

'unconstrained' form of soft-margin SVM:

$$\min_{b,\mathbf{w}} \frac{1}{2}\mathbf{w}^T\mathbf{w} + \frac{C}{C}\sum_{n=1}^{N} \max(1 - y_n(\mathbf{w}^T\mathbf{z}_n + b), 0)$$

Unconstrained Form

$$\min_{b,\mathbf{w}} \frac{1}{2}\mathbf{w}^T\mathbf{w} + \frac{C}{C}\sum_{n=1}^{N} \max(1 - y_n(\mathbf{w}^T\mathbf{z}_n + b), 0)$$

 $\min \quad \frac{1}{2}\mathbf{w}^{\mathsf{T}}\mathbf{w} + \mathbf{C}\sum\widehat{\mathrm{err}}$

just L2 regularization

min
$$\frac{\lambda}{N} \mathbf{w}^T \mathbf{w} + \frac{1}{N} \sum \text{err}$$

with shorter w, another parameter, and special err

why not solve this? :-)

- not QP, no (?) kernel trick
- $max(\cdot, 0)$ not differentiable, harder to solve

SVM as Regularized Model

	minimize	constraint
regularization by constraint	E _{in}	$\mathbf{w}^T\mathbf{w} \leq \frac{\mathbf{C}}{\mathbf{C}}$
hard-margin SVM	$\mathbf{w}^T\mathbf{w}$	$E_{\text{in}} = 0$ [and more]
L2 regularization	$\frac{\lambda}{N}\mathbf{w}^T\mathbf{w} + E_{in}$	
soft-margin SVM	$\frac{1}{2}\mathbf{w}^T\mathbf{w} + \frac{\mathbf{C}N\widehat{E_{in}}}{2}$	

large margin \iff fewer hyperplanes \iff L2 regularization of short ${\bf w}$

soft margin
$$\Longleftrightarrow$$
 special $\widehat{\operatorname{err}}$

larger \mathcal{C} or $\mathcal{C} \iff$ smaller $\lambda \iff$ less regularization

viewing SVM as regularized model:

allows extending/connecting to other learning models

When viewing soft-margin SVM as regularized model, a larger *C* corresponds to

- $oldsymbol{0}$ a larger λ , that is, stronger regularization
- $oldsymbol{2}$ a smaller λ , that is, stronger regularization
- \odot a larger λ , that is, weaker regularization
- **4** a smaller λ , that is, weaker regularization

When viewing soft-margin SVM as regularized model, a larger *C* corresponds to

- $oldsymbol{0}$ a larger λ , that is, stronger regularization
- ${f 2}$ a smaller λ , that is, stronger regularization
- \odot a larger λ , that is, weaker regularization
- 4 a smaller λ , that is, weaker regularization

Reference Answer: 4

Comparing the formulations on page 4 of the slides, we see that C corresponds to $\frac{1}{2\lambda}$. So larger C corresponds to smaller λ , which surely means weaker regularization.

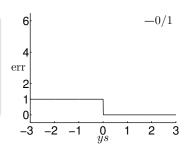
SVM for Soft Binary Classification

Algorithmic Error Measure of SVM

$$\min_{b,\mathbf{w}} \frac{1}{2}\mathbf{w}^T\mathbf{w} + C\sum_{n=1}^N \max(1 - \mathbf{y}_n(\mathbf{w}^T\mathbf{z}_n + b), 0)$$

linear score
$$s = \mathbf{w}^T \mathbf{z}_n + b$$

- $err_{0/1}(s, y) = [ys \le 0]$
- $\widehat{\operatorname{err}}_{SVM}(s, y) = \max(1 ys, 0)$: upper bound of err_{0/1} -often called hinge error measure



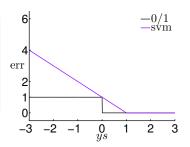
err_{SVM}: algorithmic error measure by convex upper bound of err_{0/1}

Algorithmic Error Measure of SVM

$$\min_{b,\mathbf{w}} \frac{1}{2}\mathbf{w}^T\mathbf{w} + C\sum_{n=1}^N \max(1 - \mathbf{y}_n(\mathbf{w}^T\mathbf{z}_n + b), 0)$$

linear score
$$s = \mathbf{w}^T \mathbf{z}_n + b$$

- $err_{0/1}(s, y) = [ys \le 0]$
- $\widehat{\operatorname{err}}_{SVM}(s, y) = \max(1 ys, 0)$: upper bound of err_{0/1} -often called hinge error measure

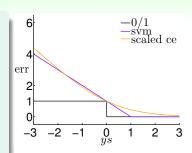


err_{SVM}: algorithmic error measure by convex upper bound of err_{0/1}

Connection between SVM and Logistic Regression

linear score
$$s = \mathbf{w}^T \mathbf{z}_n + b$$

- $\operatorname{err}_{0/1}(s, y) = [ys \le 0]$
- $\widehat{\text{err}}_{\text{SVM}}(s, y) = \max(1 ys, 0)$: upper bound of $\operatorname{err}_{0/1}$
- $\operatorname{err}_{SCE}(s, y) = \log_2(1 + \exp(-ys))$: another upper bound of $\operatorname{err}_{0/1}$ used in **logistic regression**



SVM ≈ L2-regularized **logistic regression**

Linear Models for Binary Classification

PLA

soft-margin

regularized logistic regression for classification

minimize err_{0/1} specially

 pros: efficient if lin. separable

 cons: works only if lin. separable, otherwise needing pocket minimize regularized $\widehat{\text{err}}_{\text{SVM}}$ by QP

- pros: 'easy' optimization & theoretical guarantee
- cons: loose bound of err_{0/1} for very negative ys

minimize regularized err_{SCF} by GD/SGD/...

- pros: 'easy' optimization & regularization guard
- cons: loose bound of err_{0/1} for very negative ys

regularized LogReg ⇒ approximate SVM SVM ⇒ approximate LogReg (?)

We know that $\widehat{\operatorname{err}}_{\operatorname{SVM}}(s,y)$ is an upper bound of $\operatorname{err}_{0/1}(s,y)$. When is the upper bound tight? That is, when is $\widehat{\operatorname{err}}_{\operatorname{SVM}}(s,y) = \operatorname{err}_{0/1}(s,y)$?

- 1 $ys \ge 0$
- **2** $ys \le 0$
- 3 $ys \ge 1$
- 4 $ys \leq 1$

We know that $\widehat{\operatorname{err}}_{\text{SVM}}(s,y)$ is an upper bound of $\operatorname{err}_{0/1}(s,y)$. When is the upper bound tight? That is, when is $\widehat{\operatorname{err}}_{\text{SVM}}(s,y) = \operatorname{err}_{0/1}(s,y)$?

- 1 $ys \ge 0$
- 2 $ys \leq 0$
- 3 $ys \ge 1$
- **4** $ys \le 1$

Reference Answer: (3)

By plotting the figure, we can easily see that $\widehat{\operatorname{err}}_{\text{SVM}}(s,y) = \operatorname{err}_{0/1}(s,y)$ if and only if $ys \geq 1$. In that case, both error functions evaluate to 0.

SVM for Soft Binary Classification

Naïve Idea 1

- 1 run SVM and get $(b_{SVM}, \mathbf{w}_{SVM})$
- 2 return $g(\mathbf{x}) = \theta(\mathbf{w}_{\mathsf{SVM}}^T \mathbf{x} + b_{\mathsf{SVM}})$

- 'direct' use of similarity —works reasonably well
- no LogReg flavor

Naïve Idea 2

- 1 run SVM and get $(b_{SVM}, \mathbf{w}_{SVM})$
- 2 run LogReg with $(b_{SVM}, \mathbf{w}_{SVM})$ as \mathbf{w}_0
- 3 return LogReg solution as $g(\mathbf{x})$
 - not really 'easier' than original LogReg
- SVM flavor (kernel?) lost

want: flavors from both sides

A Possible Model: Two-Level Learning

$$g(\mathbf{x}) = \theta(\mathbf{A} \cdot (\mathbf{w}_{\text{SVM}}^T \mathbf{\Phi}(\mathbf{x}) + b_{\text{SVM}}) + \mathbf{B})$$

- SVM flavor: fix hyperplane direction by w_{SVM}—kernel applies
- LogReg flavor: fine-tune hyperplane to match maximum likelihood by scaling (A) and shifting (B)
 - often A > 0 if w_{SVM} reasonably good
 - often B ≈ 0 if b_{SVM} reasonably good

new LogReg Problem:

$$\min_{A,B} \frac{1}{N} \sum_{n=1}^{N} \log \left(1 + \exp \left(-y_n \left(\underbrace{A} \cdot (\underbrace{\mathbf{w}_{\text{SVM}}^T \mathbf{\Phi}(\mathbf{x}_n) + b_{\text{SVM}}}_{\mathbf{\Phi}_{\text{SVM}}(\mathbf{x}_n)} \right) + \underbrace{B} \right) \right) \right)$$

two-level learning:

LogReg on SVM-transformed data

Probabilistic SVM

Platt's Model of Probabilistic SVM for Soft Binary Classification

- 1 run SVM on \mathcal{D} to get $(b_{\text{SVM}}, \mathbf{w}_{\text{SVM}})$ [or the equivalent α], and transform \mathcal{D} to $\mathbf{z}'_n = \mathbf{w}_{\text{SVM}}^T \mathbf{\Phi}(\mathbf{x}_n) + b_{\text{SVM}}$ —actual model performs this step in a more complicated manner
- 2 run LogReg on $\{(\mathbf{z}'_n, y_n)\}_{n=1}^N$ to get (A, B)—actual model adds some special regularization here
- 3 return $g(\mathbf{x}) = \theta(\mathbf{A} \cdot (\mathbf{w}_{SVM}^T \mathbf{\Phi}(\mathbf{x}) + b_{SVM}) + \mathbf{B})$
 - soft binary classifier not having the same boundary as SVM classifier
 - —because of B
 - how to solve LogReg: GD/SGD/or better
 - —because only two variables

kernel SVM \Longrightarrow approx. LogReg in \mathcal{Z} -space

Recall that the score $\mathbf{w}_{\text{SVM}}^T \mathbf{\Phi}(\mathbf{x}) + b_{\text{SVM}} = \sum_{\text{SV}} \alpha_n \mathbf{y}_n \mathcal{K}(\mathbf{x}_n, \mathbf{x}) + b_{\text{SVM}}$ for the

kernel SVM. When coupling the kernel SVM with (A, B) to form a probabilistic SVM, which of the following is the resulting $g(\mathbf{x})$?

$$\bullet \left(\sum_{SV} B\alpha_n y_n K(\mathbf{x}_n, \mathbf{x}) + b_{SVM}\right)$$

2
$$\theta\left(\sum_{SV} B\alpha_n y_n K(\mathbf{x}_n, \mathbf{x}) + Bb_{SVM} + A\right)$$

3
$$\theta\left(\sum_{SV} A\alpha_n y_n K(\mathbf{x}_n, \mathbf{x}) + b_{SVM}\right)$$

$$4 \theta \left(\sum_{SV} A \alpha_n y_n K(\mathbf{x}_n, \mathbf{x}) + A b_{SVM} + B \right)$$

Recall that the score $\mathbf{w}_{\text{SVM}}^T \mathbf{\Phi}(\mathbf{x}) + b_{\text{SVM}} = \sum_{\text{SV}} \alpha_n \mathbf{y}_n \mathcal{K}(\mathbf{x}_n, \mathbf{x}) + b_{\text{SVM}}$ for the

kernel SVM. When coupling the kernel SVM with (A, B) to form a probabilistic SVM, which of the following is the resulting $g(\mathbf{x})$?

$$\bullet \left(\sum_{SV} B\alpha_n y_n K(\mathbf{x}_n, \mathbf{x}) + b_{SVM}\right)$$

2
$$\theta\left(\sum_{SV} B\alpha_n y_n K(\mathbf{x}_n, \mathbf{x}) + Bb_{SVM} + A\right)$$

3
$$\theta\left(\sum_{SV} A\alpha_n y_n K(\mathbf{x}_n, \mathbf{x}) + b_{SVM}\right)$$

$$4 \theta \left(\sum_{SV} A \alpha_n y_n K(\mathbf{x}_n, \mathbf{x}) + A b_{SVM} + B \right)$$

Reference Answer: (4)

We can simply plug the kernel formula of the score into $g(\mathbf{x})$.

Summary

1 Embedding Numerous Features: Kernel Models

Lecture 5: SVM for Soft Binary Classification

- Soft-Margin SVM as Regularized Model
 L2-regularization with hinge error measure
- SVM versus Logistic Regression
 ≈ L2-regularized logistic regression
- SVM for Soft Binary Classification common approach: two-level learning
- next: kernel models for regression
- 2 Combining Predictive Features: Aggregation Models
- 3 Distilling Implicit Features: Extraction Models