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SVM for Soft Binary Classification

Roadmap
1 Embedding Numerous Features: Kernel Models

Lecture 4: Soft-Margin Support Vector Machine
allow some margin violations ξn while penalizing
them by C; equivalent to upper-bounding αn by C

Lecture 5: SVM for Soft Binary Classification
Soft-Margin SVM as Regularized Model
SVM versus Logistic Regression
SVM for Soft Binary Classification

2 Combining Predictive Features: Aggregation Models
3 Distilling Implicit Features: Extraction Models
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SVM for Soft Binary Classification Soft-Margin SVM as Regularized Model

Wrap-Up

Hard-Margin Primal

min
b,w

1
2

wT w

s.t. yn(wT zn + b) ≥ 1

Soft-Margin Primal

min
b,w,ξ

1
2

wT w + C
N∑

n=1

ξn

s.t. yn(wT zn + b) ≥ 1− ξn, ξn ≥ 0

Hard-Margin Dual

min
α

1
2
αT Qα− 1Tα

s.t. yTα = 0
0 ≤ αn

Soft-Margin Dual

min
α

1
2
αT Qα− 1Tα

s.t. yTα = 0
0 ≤ αn ≤ C

soft-margin preferred in practice;
linear: LIBLINEAR; non-linear: LIBSVM
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SVM for Soft Binary Classification Soft-Margin SVM as Regularized Model

Slack Variables ξn

• record ‘margin violation’ by ξn

• penalize with margin violation

min
b,w,ξ

1
2

wT w + C ·
N∑

n=1

ξn

s.t. yn(wT zn + b) ≥ 1− ξn and ξn ≥ 0 for all n
Hi

Hi

violation

on any (b,w), ξn = margin violation = max
(
1− yn(wT zn + b),0

)
• (xn, yn) violating margin: ξn = 1− yn(wT zn + b)
• (xn, yn) not violating margin: ξn = 0

‘unconstrained’ form of soft-margin SVM:

min
b,w

1
2

wT w + C
N∑

n=1

max
(
1− yn(wT zn + b),0

)
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SVM for Soft Binary Classification Soft-Margin SVM as Regularized Model

Unconstrained Form

min
b,w

1
2

wT w + C
N∑

n=1

max
(
1− yn(wT zn + b),0

)

familiar? :-)

min
1
2

wT w + C
∑

êrr

just L2 regularization

min
λ

N
wT w +

1
N

∑
err

with shorter w, another
parameter, and special err

why not solve this? :-)
• not QP, no (?) kernel trick
• max(·,0) not differentiable, harder to

solve
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SVM for Soft Binary Classification Soft-Margin SVM as Regularized Model

SVM as Regularized Model

minimize constraint
regularization by constraint Ein wT w ≤ C

hard-margin SVM wT w Ein = 0 [and more]
L2 regularization λ

N wT w + Ein

soft-margin SVM 1
2wT w + CNÊin

large margin⇐⇒ fewer hyperplanes⇐⇒ L2 regularization of short w

soft margin⇐⇒ special êrr

larger C or C ⇐⇒ smaller λ⇐⇒ less regularization

viewing SVM as regularized model:

allows extending/connecting to other learning models
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SVM for Soft Binary Classification Soft-Margin SVM as Regularized Model

Fun Time
When viewing soft-margin SVM as regularized model, a larger C
corresponds to

1 a larger λ, that is, stronger regularization
2 a smaller λ, that is, stronger regularization
3 a larger λ, that is, weaker regularization
4 a smaller λ, that is, weaker regularization

Reference Answer: 4

Comparing the formulations on page 4 of the
slides, we see that C corresponds to 1

2λ . So
larger C corresponds to smaller λ, which
surely means weaker regularization.
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SVM for Soft Binary Classification SVM versus Logistic Regression

Algorithmic Error Measure of SVM

min
b,w

1
2

wT w + C
N∑

n=1

max
(
1− yn(wT zn + b),0

)

linear score s = wT zn + b
• err0/1(s, y) = Jys ≤ 0K
• êrrSVM(s, y) = max(1− ys,0):

upper bound of err0/1
—often called hinge error measure

−3 −2 −1 0 1 2 3

0

1

2

4

6

ys

err

0/1

−3 −2 −1 0 1 2 3

0

1

2

4

6

ys

err

0/1
svm

êrrSVM: algorithmic error measure
by convex upper bound of err0/1
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SVM for Soft Binary Classification SVM versus Logistic Regression

Connection between SVM and Logistic Regression

linear score s = wT zn + b
• err0/1(s, y) = Jys ≤ 0K
• êrrSVM(s, y) = max(1− ys,0):

upper bound of err0/1

• errSCE(s, y) = log2(1 + exp(−ys)):
another upper bound of err0/1 used in
logistic regression

−3 −2 −1 0 1 2 3

0

1

2

4

6

ys

err

0/1
svm
scaled ce

−∞ ←− ys −→ +∞
≈ −ys êrrSVM(s, y) = 0
≈ −ys (ln2) · errSCE(s, y) ≈ 0

SVM ≈ L2-regularized logistic regression
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SVM for Soft Binary Classification SVM versus Logistic Regression

Linear Models for Binary Classification
PLA

minimize
err0/1 specially
• pros: efficient if

lin. separable

• cons: works only
if lin. separable,
otherwise
needing pocket

soft-margin
SVM

minimize regularized
êrrSVM by QP
• pros: ‘easy’

optimization &
theoretical
guarantee
• cons: loose

bound of err0/1 for
very negative ys

regularized
logistic regression
for classification
minimize regularized
errSCE by GD/SGD/...
• pros: ‘easy’

optimization &
regularization
guard
• cons: loose

bound of err0/1 for
very negative ys

regularized LogReg =⇒ approximate SVM
SVM =⇒ approximate LogReg (?)
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SVM for Soft Binary Classification SVM versus Logistic Regression

Fun Time
We know that êrrSVM(s, y) is an upper bound of err0/1(s, y). When is
the upper bound tight? That is, when is êrrSVM(s, y) = err0/1(s, y)?

1 ys ≥ 0
2 ys ≤ 0
3 ys ≥ 1
4 ys ≤ 1

Reference Answer: 3

By plotting the figure, we can easily see that
êrrSVM(s, y) = err0/1(s, y) if and only if ys ≥ 1.
In that case, both error functions evaluate to 0.

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 10/15



SVM for Soft Binary Classification SVM versus Logistic Regression

Fun Time
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1 ys ≥ 0
2 ys ≤ 0
3 ys ≥ 1
4 ys ≤ 1

Reference Answer: 3

By plotting the figure, we can easily see that
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SVM for Soft Binary Classification SVM for Soft Binary Classification

SVM for Soft Binary Classification

Naïve Idea 1
1 run SVM and get

(bSVM,wSVM)

2 return
g(x) = θ(wT

SVMx + bSVM)

• ‘direct’ use of similarity
—works reasonably well
• no LogReg flavor

Naïve Idea 2
1 run SVM and get

(bSVM,wSVM)

2 run LogReg with
(bSVM,wSVM) as w0

3 return LogReg solution as
g(x)

• not really ‘easier’ than
original LogReg

• SVM flavor (kernel?) lost

want: flavors from both sides
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SVM for Soft Binary Classification SVM for Soft Binary Classification

A Possible Model: Two-Level Learning
g(x) = θ(A · (wT

SVMΦ(x) + bSVM) + B)

• SVM flavor: fix hyperplane direction by wSVM—kernel applies
• LogReg flavor: fine-tune hyperplane to match maximum

likelihood by scaling (A) and shifting (B)
• often A > 0 if wSVM reasonably good
• often B ≈ 0 if bSVM reasonably good

new LogReg Problem:

min
A,B

1
N

N∑
n=1

log

1 + exp

−yn

(
A · (wT

SVMΦ(xn) + bSVM︸ ︷︷ ︸
ΦSVM(xn)

) + B
)


two-level learning:

LogReg on SVM-transformed data
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SVM for Soft Binary Classification SVM for Soft Binary Classification

Probabilistic SVM
Platt’s Model of Probabilistic SVM for Soft Binary Classification

1 run SVM on D to get (bSVM,wSVM) [or the equivalent α], and
transform D to z′n = wT

SVMΦ(xn) + bSVM

—actual model performs this step in a more complicated manner
2 run LogReg on {(z′n, yn)}Nn=1 to get (A,B)

—actual model adds some special regularization here
3 return g(x) = θ(A · (wT

SVMΦ(x) + bSVM) + B)

• soft binary classifier not having the same boundary as SVM
classifier
—because of B
• how to solve LogReg: GD/SGD/or better

—because only two variables

kernel SVM =⇒ approx. LogReg in Z-space
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SVM for Soft Binary Classification SVM for Soft Binary Classification

Fun Time
Recall that the score wT

SVMΦ(x) + bSVM =
∑
SV

αnynK (xn,x) + bSVM for the

kernel SVM. When coupling the kernel SVM with (A,B) to form a
probabilistic SVM, which of the following is the resulting g(x)?

1 θ

(∑
SV

BαnynK (xn,x) + bSVM

)
2 θ

(∑
SV

BαnynK (xn,x) + BbSVM + A
)

3 θ

(∑
SV

AαnynK (xn,x) + bSVM

)
4 θ

(∑
SV

AαnynK (xn,x) + AbSVM + B
)

Reference Answer: 4

We can simply plug the kernel formula of the
score into g(x).
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SVM for Soft Binary Classification SVM for Soft Binary Classification

Summary
1 Embedding Numerous Features: Kernel Models

Lecture 5: SVM for Soft Binary Classification
Soft-Margin SVM as Regularized Model

L2-regularization with hinge error measure

SVM versus Logistic Regression
≈ L2-regularized logistic regression

SVM for Soft Binary Classification
common approach: two-level learning

• next: kernel models for regression

2 Combining Predictive Features: Aggregation Models
3 Distilling Implicit Features: Extraction Models
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