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SVM for Soft Binary Classification

Roadmap
© Embedding Numerous Features: Kernel Models

Lecture 4: Soft-Margin Support Vector Machine

allow some margin violations ¢, while penalizing
them by C; equivalent to upper-bounding o, by C

Lecture 5: SVM for Soft Binary Classification

e Soft-Margin SVM as Regularized Model
e SVM versus Logistic Regression
e SVM for Soft Binary Classification

® Combining Predictive Features: Aggregation Models
@ Distilling Implicit Features: Extraction Models
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SVM for Soft Binary Classification Soft-Margin SVM as Regularized Model

Wrap-Up
Hard-Margin Primal -Margin Primal
1 1 N
o Ve o Ve
T,w W W l;nmlrns SW w+ anz;g,,

st Yo(W'zn+Db) > 1 st ya(W'zp+b) > 16,6, >0

Hard-Margin Dual -Margin Dual

min %aTQa -1 min %aTQa -1"a
s.t. ya=0 s.t. yia=0
0<a, ) 0<a,<C )
soft-margin preferred in practice;
linear: LIBLINEAR; non-linear: LIBSVM J
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SVM for Soft Binary Classification Soft-Margin SVM as Regularized Model
Slack Variables &,
e record ‘margin violation’ by &,
¢ penalize with margin violation

N
. 1+
7w w .
min +C ;fn

st ya(W'z,+b)>1—¢,and &, > 0forall n

on any (b, w), £, = margin violation = max(1 — Yn(WTz, + b), 0)
* (Xp, yn) violating margin: £, =1 — yp(W'2z, + b)
® (Xp, yn) Not violating margin: £, = 0

‘unconstrained’ form of soft-margin SVM:

N
1
min 5w7w+ CZ max (1 —yn(szn+b),O)

b,w
n=1
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Soft-Margin SVM as Regularized Model

Unconstrained Form

SVM for Soft Binary Classification

N
1
min EWTW + CZ max (1 — yn(W'z, + b), 0)

b,w
n=1

familiar? :-) just L2 regularization

1 = )

min EWTW+ CZerr min —w w4 — Zerr
with shorter w, another
parameter, and special err

why not solve this? :-)
¢ not QP, no (?) kernel trick
* max(-,0) not differentiable, harder to

solve
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SVM for Soft Binary Classification Soft-Margin SVM as Regularized Model

SVM as Regularized Model

minimize constraint
regularization by constraint E ww<C
hard-margin SVM w'w Ei, = 0 [and more]
L2 regularization Aww + Ep,
soft-margin SVM w'w + CNE;,

large margin < fewer hyperplanes <= L2 regularization of short w
soft margin <= special err

larger C or C <= smaller \ <= less regularization

viewing SVM as regularized model:

allows to other learning models
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SVM for Soft Binary Classification Soft-Margin SVM as Regularized Model

Fun Time

When viewing soft-margin SVM as regularized model, a larger C
corresponds to

© alarger ), that is, stronger regularization
® asmaller A, that is, stronger regularization
® a larger ), that is, weaker regularization
@ a smaller A, that is, weaker regularization
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SVM for Soft Binary Classification Soft-Margin SVM as Regularized Model

Fun Time
When viewing soft-margin SVM as regularized model, a larger C
corresponds to
© alarger ), that is, stronger regularization
® asmaller A, that is, stronger regularization
® a larger ), that is, weaker regularization
@ a smaller A, that is, weaker regularization

Reference Answer: @

Comparing the formulations on page 4 of the
slides, we see that C corresponds to 217 So
larger C corresponds to smaller A, which
surely means weaker regularization.
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SVM for Soft Binary Classification SVM versus Logistic Regression

Algorithmic Error Measure of SVM

b,w

N
1
min EWTW—l— CZ max (1 —yn(szn+b),O) }

n=1

linear score s=w'z,+ b 6 —0/1

* errg/1(S,y) =[ys < 0] 4

J EHSVM(S7 y) = max(1 — VS, O)
upper bound of errg /1

—often called hinge error measure (1)
v

-3 -2 -1 0 1 2 3
ys

errsyy: algorithmic error measure
by convex upper bound of errg 4
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SVM for Soft Binary Classification SVM versus Logistic Regression

Algorithmic Error Measure of SVM

N
. 1
min EWTW + C; max(1 — yn(W'z, + b),0) }
linear score s=w’z,+ b 6 —9/L
* errg/1(S,y) =[ys < 0] 4

J EHSVM(S7 y) = max(1 — VS, O)
upper bound of errg /1

—often called hinge error measure (1) ™
v

-3 -2 -1 0 1 2 3
ys

errsyy: algorithmic error measure
by convex upper bound of errg 4
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SVM for Soft Binary Classification SVM versus Logistic Regression

Connection between SVM and Logistic Regression

linear score s =w'z,+ b § Uk
scaled ce
* errg/1(s,y) = [ys < 0] 4
® EI'\I'SVM(S, y) = max('l — yS, O) erT \
upper bound of errg 1 2 N
1
® crrsce(S, y) = logo(1 + exp(—ys)): 0
another upper bound of erry /4 used in 3 2 4 0 1 2 3
logistic regression ys
—00 — ys — +00
~ —VSs errsym(S, y) =
~ —ys (In2) - errsce(s, ) ~

SVM ~ L2-regularized logistic regression J
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SVM for Soft Binary Classification

SVM versus Logistic Regression

Linear Models for Binary Classification

PLA

minimize
errg/1 specially
e pros: efficient if
lin. separable

¢ cons: works only
if lin. separable,
otherwise
needing pocket

soft-margin
SVM

minimize regularized
errsyy by QP
pros: ‘easy’
optimization &
theoretical
guarantee

cons: loose
bound of errg ¢ for
very negative ys

v

regularized

logistic regression
for classification

minimize regularized
errsce by GD/SGD...
® pros: ‘easy’
optimization &
regularization
guard
e cons: loose
bound of errg ¢ for
very negative ys

regularized LogReg = approximate SVM
SVM — approximate LogReg (?) J
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SVM for Soft Binary Classification SVM versus Logistic Regression

Fun Time

We know that ertsyu (S, y) is an upper bound of errg/1(s, y). When is
the upper bound tight? That is, when is ertsyu(s, y) = errg,1(S, ¥)?

©®ys>0
® ys<0
®O ys>1
O ys<t
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SVM versus Logistic Regression

Fun Time

SVM for Soft Binary Classification

We know that ertsyu (S, y) is an upper bound of errg/1(s, y). When is
the upper bound tight? That is, when is errsyu (S, ¥) = errg/1(S,y)?
O ys>0
® ys<0
O ys>1
O ys<t

Reference Answer: @

By plotting the figure, we can easily see that
errsvm (S, y) = errg 4 (8, y) if and only if ys > 1.
In that case, both error functions evaluate to 0.
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SVM for Soft Binary Classification SVM for Soft Binary Classification

SVM for Soft Binary Classification

Naive Idea 1 Naive |ldea 2

© run SVM and get © run SVM and get
(bsvm, Wsym) (bsym, Wsym)
@ return ® run LogReg with
9(x) = O(WI, X + bsyn) (bsvm, Wsym) as Wo
® return LogReg solution as
a(x)
e ‘direct’ use of similarity * not really ‘easier’ than
—works reasonably well original LogReg
¢ no LogReg flavor e SVM flavor (kernel?) lost |
want: flavors from both sides J
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SVM for Soft Binary Classification SVM for Soft Binary Classification

A Possible Model: Two-Level Learning
9(X) = 0(A - (W ®(X) + bow) + B) ]

* SVM flavor: fix hyperplane direction by ws,y—kernel applies

e LogReg flavor: fine-tune hyperplane to match maximum
likelihood by scaling (A) and shifting (B)
® often A > 0O if wsyy reasonably good
¢ often B ~ 0 if bsyy reasonably good

new LogReg Problem:

N

) 1
’R'g N Z log | 1+exp | —yn (A : (WSTVM(D()EIZ) + bsvvvl) + B)
n=1 ®sym(Xn)
two-level learning:
LogReg on SVM-transformed data J
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SVM for Soft Binary Classification SVM for Soft Binary Classification

Probabilistic SVM

Platt’s Model of Probabilistic SVM for Soft Binary Classification

© run SVM on D to get (bsym, Wsyn) [Or the equivalent a], and
transform D to ), = wl,,,®(Xp) + bsyw
—actual model performs this step in a more complicated manner
@® run LogReg on {(z;,, yn)}_, to get (A, B)
—actual model adds some special regularization here

© return g(x) = 0(A - (Wi, ®(X) + bsym) + 5)

soft binary classifier not having the same boundary as SV
classifier

—because of 5

how to solve LogReq: GD/SGD/or better

—because only two variables

kernel SVM — approx. LogReg in Z-space J

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 13/15



SVM for Soft Binary Classification SVM for Soft Binary Classification

Fun Time
Recall that the score W/, ®(X) + bsym = 3 anyn K (%, X) + bgyy for the

kernel SVM. When coupling the kernel SVM with (A, B) to form a
probabilistic SVM, which of the following is the resulting g(x)?

© 0 (5 Bany K G X) + b

> Bany,K(x,,X) + Bbsym +A>

90<
© 0 (15 A K(x0,%) + b )
oe<

> AanynK( ,X)+Absvm+B>
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SVM for Soft Binary Classification SVM for Soft Binary Classification

Fun Time
Recall that the score W/, ®(X) + bsym = 3 anyn K (%, X) + bgyy for the

kernel SVM. When coupling the kernel SVM with (A, B) to form a
probabilistic SVM, which of the following is the resulting g(x)?

© 0 (5 Bany K G X) + b
© 0 (5 Bany K(x,.X) + Bbswn + A)

© 0 (15 A K(x0,%) + b )

(4 )] <2Aan K( ,X)+Absvm+B>

Reference Answer: @

We can simply plug the kernel formula of the
score into g(x).
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SVM for Soft Binary Classification SVM for Soft Binary Classification

Summary
© Embedding Numerous Features: Kernel Models

Lecture 5: SVM for Soft Binary Classification

e Soft-Margin SVM as Regularized Model
L2-regularization with hinge error measure
o SVM versus Logistic Regression
~ L2-regularized logistic regression
e SVM for Soft Binary Classification
common approach: two-level learning

* next: kernel models for regression
@® Combining Predictive Features: Aggregation Models
@ Distilling Implicit Features: Extraction Models
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