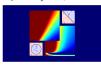
Machine Learning Foundations (機器學習基石)



Lecture 15: Validation Hsuan-Tien Lin (林軒田) htlin@csie.ntu.edu.tw

Department of Computer Science & Information Engineering

National Taiwan University (國立台灣大學資訊工程系)

Roadmap

- 1 When Can Machines Learn?
- 2 Why Can Machines Learn?
- 3 How Can Machines Learn?
- 4 How Can Machines Learn Better?

Lecture 14: Regularization

minimizes augmented error, where the added regularizer effectively limits model complexity

Lecture 15: Validation

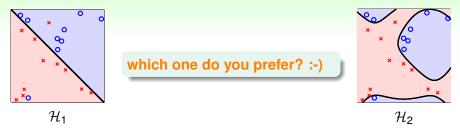
- Model Selection Problem
- Validation
- Leave-One-Out Cross Validation
- V-Fold Cross Validation

Validation Model Selection Problem So Many Models Learned Even Just for Binary Classification ... $\mathcal{A} \in \{ \mathsf{PLA}, \mathsf{pocket}, \mathsf{linear regression}, \mathsf{logistic regression} \}$ $T \in \{100, 1000, 10000\}$ $\eta \in \{1, 0.01, 0.0001\}$ $\Phi \in \{$ linear, quadratic, poly-10, Legendre-poly-10 $\}$ $\Omega(\mathbf{w}) \in \{ L2 \text{ regularizer, } L1 \text{ regularizer, symmetry regularizer} \}$ $\lambda \in \{0, 0.01, 1\}$

> in addition to your **favorite** combination, may need to try other combinations to get a good *g*

Model Selection Problem

Model Selection Problem



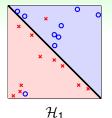
- given: *M* models $\mathcal{H}_1, \mathcal{H}_2, \dots, \mathcal{H}_M$, each with corresponding algorithm $\mathcal{A}_1, \mathcal{A}_2, \dots, \mathcal{A}_M$
- goal: select \mathcal{H}_{m^*} such that $g_{m^*} = \mathcal{A}_{m^*}(\mathcal{D})$ is of low $E_{\text{out}}(g_{m^*})$
- unknown E_{out} due to unknown $P(\mathbf{x}) \& P(y|\mathbf{x})$, as always :-)
- arguably the most important practical problem of ML

how to select? visually?

-no, remember Lecture 12? :-)

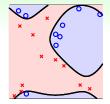
Model Selection Problem

Model Selection by Best Ein



select by best *E*in?

$$m^* = \underset{1 \le m \le M}{\operatorname{argmin}} (E_m = E_{\operatorname{in}}(\mathcal{A}_m(\mathcal{D})))$$

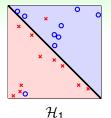


- Φ₁₁₂₆ always more preferred over Φ₁;
 λ = 0 always more preferred over λ = 0.1—overfitting?
- if A_1 minimizes E_{in} over H_1 and A_2 minimizes E_{in} over H_2 ,
 - $\Longrightarrow g_{m^*}$ achieves minimal E_{in} over $\mathcal{H}_1 \cup \mathcal{H}_2$
 - \implies 'model selection + learning' pays $d_{VC}(\mathcal{H}_1 \cup \mathcal{H}_2)$
 - -bad generalization?

selecting by *E*_{in} is **dangerous**

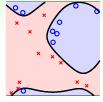
Model Selection Problem

Model Selection by Best Etest



select by best E_{test} , which is evaluated on a fresh $\mathcal{D}_{\text{test}}$?

$$m^* = \operatorname*{argmin}_{1 \leq m \leq M} (E_m = E_{\operatorname{test}}(\mathcal{A}_m(\mathcal{D})))$$



 \mathcal{H}_2

• generalization guarantee (finite-bin Hoeffding): $E_{\rm out}(g_{m^*}) \leq E_{\rm test}(g_{m^*}) + O\left(\sqrt{\frac{\log M}{N_{\rm test}}}\right)$

-yes! strong guarantee :-)

but where is D_{test}?—your boss's safe, maybe? :-(

selecting by *E*_{test} is **infeasible** and **cheating**

Model Selection Problem

Comparison between Ein and Etest

in-sample error Ein

- calculated from \mathcal{D}
- feasible on hand
- 'contaminated' as *D* also used by *A_m* to 'select' *g_m*

test error Etest

- calculated from D_{test}
- infeasible in boss's safe
- 'clean' as $\mathcal{D}_{\text{test}}$ never used for selection before

something in between: *E*_{val}

- calculated from $\mathcal{D}_{\text{val}} \subset \mathcal{D}$
- feasible on hand
- 'clean' if D_{val} never used by A_m before

selecting by *E*_{val}: legal cheating :-)

Hsuan-Tien Lin (NTU CSIE)

Fun Time

For $\mathcal{X} = \mathbb{R}^d$, consider two hypothesis sets, \mathcal{H}_+ and \mathcal{H}_- . The first hypothesis set contains all perceptrons with $w_1 \ge 0$, and the second hypothesis set contains all perceptrons with $w_1 \le 0$. Denote g_+ and g_- as the minimum- \mathcal{E}_{in} hypothesis in each hypothesis set, respectively. Which statement below is true?

- If *E*_{in}(*g*₊) < *E*_{in}(*g*₋), then *g*₊ is the minimum-*E*_{in} hypothesis of all perceptrons in ℝ^d.
- 2 If E_{test}(g₊) < E_{test}(g₋), then g₊ is the minimum-E_{test} hypothesis of all perceptrons in ℝ^d.
- 3 The two hypothesis sets are disjoint.
- 4 None of the above

Fun Time

For $\mathcal{X} = \mathbb{R}^d$, consider two hypothesis sets, \mathcal{H}_+ and \mathcal{H}_- . The first hypothesis set contains all perceptrons with $w_1 \ge 0$, and the second hypothesis set contains all perceptrons with $w_1 \le 0$. Denote g_+ and g_- as the minimum- \mathcal{E}_{in} hypothesis in each hypothesis set, respectively. Which statement below is true?

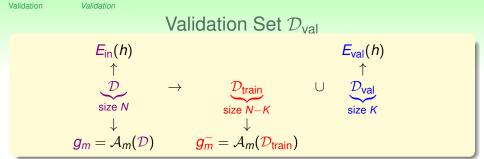
- If *E*_{in}(*g*₊) < *E*_{in}(*g*₋), then *g*₊ is the minimum-*E*_{in} hypothesis of all perceptrons in ℝ^d.
- 2 If E_{test}(g₊) < E_{test}(g₋), then g₊ is the minimum-E_{test} hypothesis of all perceptrons in ℝ^d.
- 3 The two hypothesis sets are disjoint.

4 None of the above

Reference Answer: (1)

Note that the two hypothesis sets are not disjoint (sharing ' $w_1 = 0$ ' perceptrons) but their union is all perceptrons.

Hsuan-Tien Lin (NTU CSIE)

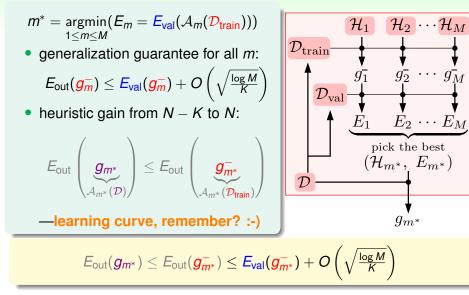


- $\mathcal{D}_{val} \subset \mathcal{D}$: called validation set—'on-hand' simulation of test set
- to connect *E*_{val} with *E*_{out}:
 *D*_{val} ^{*iid*} *P*(**x**, *y*) ⇐ select *K* examples from *D* at random
- to make sure D_{val} 'clean': feed only D_{train} to A_m for model selection

$$E_{\mathsf{out}}(\underline{g_m}) \leq E_{\mathsf{val}}(\underline{g_m}) + O\left(\sqrt{rac{\log M}{K}}
ight)$$

Validation

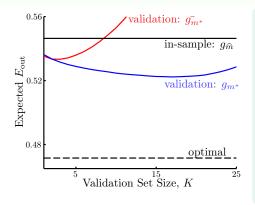
Model Selection by Best Eval



Validation

Validation in Practice

use validation to select between \mathcal{H}_{Φ_5} and $\mathcal{H}_{\Phi_{10}}$



- in-sample: selection with *E*_{in}
- optimal: cheating-selection with *E*_{test}
- sub-g: selection with E_{val} and report g⁻_{m*}
- full-g: selection with E_{val} and report g_{m*}

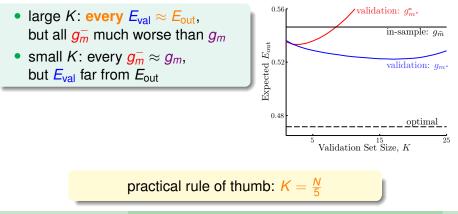
 $-E_{ ext{out}}(g_{m^*}) \leq E_{ ext{out}}(g_{m^*}^-)$ indeed

why is sub-g worse than in-sample some time?

Validation

The Dilemma about K

reasoning of validation:



Hsuan-Tien Lin (NTU CSIE)

Validation Validation

Fun Time

For a learning model that takes N^2 seconds of training when using N examples, what is the total amount of seconds needed when running the whole validation procedure with $K = \frac{N}{5}$ on 25 such models with different parameters to get the final g_{m^*} ?

- 6N²
- 2 17N²
- 3 25N²
- ④ 26N²

Validation Validation

Fun Time

For a learning model that takes N^2 seconds of training when using N examples, what is the total amount of seconds needed when running the whole validation procedure with $K = \frac{N}{5}$ on 25 such models with different parameters to get the final g_{m^*} ?

- 6N²
- 2 17N²
- 3 25N²
- ④ 26N²

Reference Answer: (2)

To get all the g_m^- , we need $\frac{16}{25}N^2 \cdot 25$ seconds. Then to get g_{m^*} , we need another N^2 seconds. So in total we need $17N^2$ seconds.

Extreme Case: K = 1

reasoning of validation:

$$E_{\text{out}}(g) \approx E_{\text{out}}(g^-) \approx E_{\text{val}}(g^-)$$

(small K) (large K)

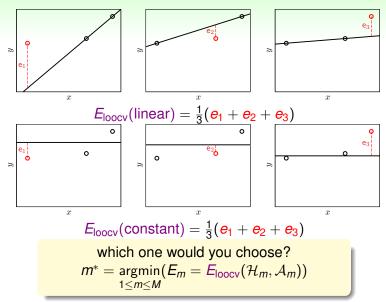
• take K = 1? $\mathcal{D}_{val}^{(n)} = \{(\mathbf{x}_n, y_n)\}$ and $E_{val}^{(n)}(g_n^-) = \operatorname{err}(g_n^-(\mathbf{x}_n), y_n) = e_n$

- make en closer to Eout(g)?—average over possible E⁽ⁿ⁾_{val}
- leave-one-out cross validation estimate:

$$E_{\text{loocv}}(\mathcal{H},\mathcal{A}) = \frac{1}{N} \sum_{n=1}^{N} e_n = \frac{1}{N} \sum_{n=1}^{N} \operatorname{err}(g_n^-(\mathbf{x}_n), y_n)$$

hope:
$$E_{\text{loocv}}(\mathcal{H}, \mathcal{A}) \approx E_{\text{out}}(g)$$

Illustration of Leave-One-Out



Hsuan-Tien Lin (NTU CSIE)

Leave-One-Out Cross Validation

Theoretical Guarantee of Leave-One-Out Estimate does $E_{loocv}(\mathcal{H}, \mathcal{A})$ say something about $E_{out}(g)$? yes, for average E_{out} on size-(N - 1) data

$$\mathbb{E}_{\mathcal{D}} E_{\text{loocv}}(\mathcal{H}, \mathcal{A}) = \mathbb{E}_{\mathcal{D}} \frac{1}{N} \sum_{n=1}^{N} e_n = \frac{1}{N} \sum_{n=1}^{N} \mathbb{E}_{\mathcal{D}} e_n$$

$$= \frac{1}{N} \sum_{n=1}^{N} \mathbb{E}_{\mathcal{D}_n} \mathbb{E}_{n, y_n} \operatorname{err}(g_n^-(\mathbf{x}_n), y_n)$$

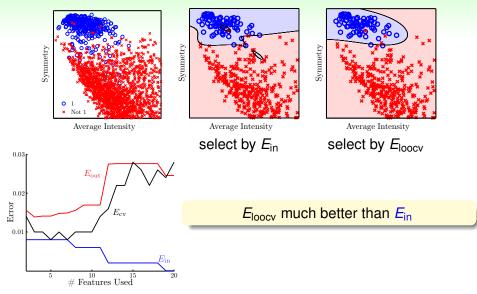
$$= \frac{1}{N} \sum_{n=1}^{N} \mathbb{E}_{\text{out}}(g_n^-)$$

$$= \frac{1}{N} \sum_{n=1}^{N} \overline{E}_{\text{out}}(N-1) = \overline{E}_{\text{out}}(N-1)$$

expected $E_{\text{loocv}}(\mathcal{H}, \mathcal{A})$ says something about expected $E_{\text{out}}(g^-)$ —often called 'almost unbiased estimate of $E_{\text{out}}(g)$ '

Hsuan-Tien Lin (NTU CSIE)

Leave-One-Out in Practice



Fun Time

Consider three examples (\mathbf{x}_1, y_1) , (\mathbf{x}_2, y_2) , (\mathbf{x}_3, y_3) with $y_1 = 1$, $y_2 = 5$, $y_3 = 7$. If we use E_{loocv} to estimate the performance of a learning algorithm that predicts with the average *y* value of the data set—the optimal constant prediction with respect to the squared error. What is E_{loocv} (squared error) of the algorithm?

Fun Time

Consider three examples (\mathbf{x}_1, y_1) , (\mathbf{x}_2, y_2) , (\mathbf{x}_3, y_3) with $y_1 = 1$, $y_2 = 5$, $y_3 = 7$. If we use E_{loocv} to estimate the performance of a learning algorithm that predicts with the average *y* value of the data set—the optimal constant prediction with respect to the squared error. What is E_{loocv} (squared error) of the algorithm?

Reference Answer: 4
This is based on a simple calculation of
$$e_1 = (1-6)^2, e_2 = (5-4)^2, e_3 = (7-3)^2.$$

V-Fold Cross Validation

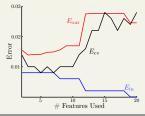
Disadvantages of Leave-One-Out Estimate

Computation

$$E_{\text{loocv}}(\mathcal{H},\mathcal{A}) = \frac{1}{N} \sum_{n=1}^{N} e_n = \frac{1}{N} \sum_{n=1}^{N} \operatorname{err}(g_n^-(\mathbf{x}_n), y_n)$$

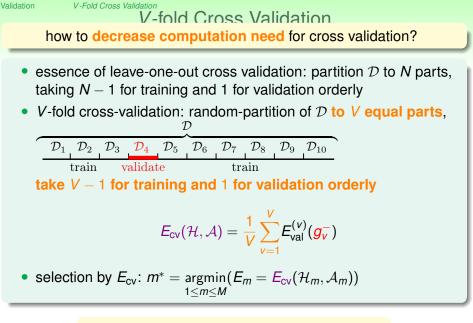
- N 'additional' training per model, not always feasible in practice
- except 'special case' like analytic solution for linear regression

Stability-due to variance of single-point estimates



Eloocv: not often used practically

Hsuan-Tien Lin (NTU CSIE)



practical rule of thumb: V = 10

Hsuan-Tien Lin (NTU CSIE)

V-Fold Cross Validation

Final Words on Validation

'Selecting' Validation Tool

- V-Fold generally preferred over single validation if computation allows
- 5-Fold or 10-Fold generally works well: not necessary to trade V-Fold with Leave-One-Out

Nature of Validation

- all training models: select among hypotheses
- all validation schemes: select among finalists
- all testing methods: just evaluate

validation still more optimistic than testing

do not fool yourself and others :-), report test result, not best validation result

Hsuan-Tien Lin (NTU CSIE)

Fun Time

For a learning model that takes N^2 seconds of training when using N examples, what is the total amount of seconds needed when running 10-fold cross validation on 25 such models with different parameters to get the final g_{m^*} ?

1
$$\frac{47}{2}N^2$$

2 $47N^2$

$$3 \frac{407}{2} N^2$$

Fun Time

For a learning model that takes N^2 seconds of training when using N examples, what is the total amount of seconds needed when running 10-fold cross validation on 25 such models with different parameters to get the final g_{m^*} ?

1
$$\frac{47}{2}N^2$$

2 $47N^2$

$$3 \frac{407}{2} N^2$$

$$407N^{2}$$

Reference Answer: (3)

To get all the E_{cv} , we need $\frac{81}{100}N^2 \cdot 10 \cdot 25$ seconds. Then to get g_{m^*} , we need another N^2 seconds. So in total we need $\frac{407}{2}N^2$ seconds.

Summary

- When Can Machines Learn?
- 2 Why Can Machines Learn?
- 3 How Can Machines Learn?
- 4 How Can Machines Learn Better?

Lecture 14: Regularization

Lecture 15: Validation

- Model Selection Problem dangerous by *E*_{in} and dishonest by *E*_{test}
- Validation select with E_{val}(A_m(D_{train})); returning A_{m*}(D)
- Leave-One-Out Cross Validation huge computation but almost unbiased
- V-Fold Cross Validation reasonable computation and performance
- next: something 'up my sleeve'