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Regularization

Roadmap
@ When Can Machines Learn?
@® Why Can Machines Learn?
® How Can Machines Learn?
@ How Can Machines Learn Better?

Lecture 13: Hazard of Overfitting

overfitting happens with excessive power,
stochastic/deterministic noise, and limited data )

Lecture 14: Regularization

e Regularized Hypothesis Set

o Weight Decay Regularization
e Regularization and VC Theory
e General Regularizers

N\
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Regularization Regularized Hypothesis Set

Regularization: The Magic

O Data
— Target
—Fit
= =
xT x
‘regularized fit’ = overfit

e idea: ‘step back’ from H g to Ho

* name history: function approximation for ill-posed problems

how to step back? J
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Regularization Regularized Hypothesis Set

Stepping Back as Constraint

Q-th order polynomial transform for x € R:

G Dm)m )
do(x) = (1,%x%...,x9)

+ linear regression, denote w by w

hypothesis w in Hqg: Wo + Wi X + W2X2 I W3X3 + ...+ W10X10
hypothesis w in H: Wo + Wi X + Wox?
that is, o = H1g AND ‘constraintthat wg = wy = ... = wjg =0’
step back = constraint J

Hsuan-Tien Lin (NTU CSIE) Machine Learning Foundations 3/21



Regularization Regularized Hypothesis Set

Regression with Constraint

Hip = {W€R10+1} Ho = {W€R10+1

WhileW3:W4:...:W10:0}

regression with Hqo: | regression with #Hs:

min E,(w min E.(w
W6R10+1 I ( ) W€R10+1 In( )
s.t. Wy3=Wwy=...=Wp=0
V. y

step back = constrained optimization of E, J

why don’t you just use w € R?+1? :-)
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Regularization Regular/zed Hypothests Set

Regression with Looser Constraint

Ho = {W e R0+ Ho = {W e R0+
while w3=...:w10:o} while > 8 of wq:o}
regression with #,: regression with #5:
Wi,y En() wepiBy En()
10
st. wy=...=wy=0 st. ) [wg#0] <3
* more flexible than H,: Ha C Hs
* less risky than H1g: My C Hio

bad news for sparse hypothesis set #5:
NP-hard to solve :-( J
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Regularization Regularized Hypothesis Set

egression with Softer Constraint

HIQ = {W z R1O+1 H(C) = {W c R10+1
while > 8 of wy = o} while [|w|2 < c}
regression with #5: regression with H(C) :

10 10

. ' - _ 2

Wer?ggr(}+1 Ein(w) s.t. g 0 [wg #0] <3 WEr?R|1r(}+1 Ein(w) s.t. E . wg < C
q= g=

v v

* H(C): overlaps but not exactly the same as #J,

e soft and smooth structure over C > 0:
H(0) C H(1.126) C ... C H(1126) C ... C H(oo) = H1o

regularized hypothesis Wgeg:
optimal solution from
regularized hypothesis set H(C)
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Regularization Regularized Hypothesis Set

Fun Time

For Q > 1, which of the following hypothesis (weight vector w € R@*1)
is not in the regularized hypothesis set H(1)?

O w’ =[0,0,...,0]
9w7=[1,0,...,0]
Ow =[11,.1]

T 1
Ow [\/o+1’\/o+1’---7\/o_+1}
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Regularization Regularized Hypothesis Set

Fun Time

For Q > 1, which of the following hypothesis (weight vector w € R@*1)
is not in the regularized hypothesis set H(1)?

©w’ =[0,0,...,0]
®w =[1,0,...,0]
Ow =11, 1]

T 1
Ow [\/o+1>\/o+1’---7\/07+1}

Reference Answer: @

The squared length of w in @ is Q+ 1, which
is not < 1.
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Regularization Weight Decay Regularization

Matrix Form of Regularized Regression Problem

min  Epp(w) = NZ(W Zn— yn)?

wWeRA+H1

(ZW—v)T(ZW—v)

Q
s.t. Z wi < C
—0

——
wiw

e > ...=(Zw —y)"(Zw —y), remember? :-)

e w/w < C: feasible w within a radius-v/C hypersphere

how to solve
constrained optimization problem? J
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Regularization Weight Decay Regularization

The Lagrange Multiplier

. 1
min Ein(W) = (2w — ) (Zw-y)st.w'w<C J

decreasing direction: —V En(w), En = const,

remember? :-)

normal vector of w/w = C: w

if —VEin(w) and w not parallel: can
decrease Ej,(w) without violating
the constraint

at optimal solution Wgeg,

—VEin(Wgee)

want: find Lagrange multiplier A > 0 and Wggg
such that V Ein(Wrec) + 5[ Wree | = 0 J
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Regularization Weight Decay Regularization

Augmented Error

e if oracle tells you \ >~ 0, then

solving V Ein(Wgea) N =0
2 (ZTZW = zTy) + Q =0
N REG N REG | —

e optimal solution:
Weee — (2724 D)7 127y

—called ridge regression in Statistics

minimizing unconstrained E,q effectively
minimizes some C-constrained Ej, J
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Regularization Weight Decay Regularization

Augmented Error

e if oracle tells you \ > 0O, then

_ 2\
SOlVIng VEin(WF{EG) + N =0

regularizer
,./\\

A
equivalent to minimizing Ein(w) + N w'w

augmented error E;yq(W)
e regularization with augmented error instead of constrained Ei,

Wgeg < argmin Egyg(w) for given A > O or A — 0
w

minimizing unconstrained E,yq effectively
minimizes some C-constrained Ej, J
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Regularization Weight Decay Regularization

The Results
A= A =0.0001 A=0.01 A=1
overfitting = = = underfitting
philosophy: a little regularization goes a long way! J

call ‘“+{w’w’ weight-decay regularization:

larger A
< prefer shorter w
< effectively smaller C

—qgo with ‘any’ transform + linear model

v
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Regularization Weight Decay Regularization

Fun Time

When would wgeg equal wyy?
O =0
® C=x
O C > |wun?
@ all of the above
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Regularization Weight Decay Regularization

Fun Time
When would wgeg equal wyy?
) =0
O C=cx
®C> HWLIN”2

O all of the above

Reference Answer: @

@ and @ shall be easy; @ means that

there are effectively no constraint on w, hence
the equivalence.
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Regularization Regularization and VC Theory

Regularization and VC Theory

VC Guarantee of
Constrained-Minimizing E;, —> Constrained-Minimizing Ej,

Regularization by

min Ein(W) s.t. ww<C Eout(w) < Ein(w) + Q(#(C))

:H: C equivalent to some A

Regularization by

Minimizing Eayg

. A
min Eaug (W) = Ein(W) + NwTw

minimizing Eayg: indirectly getting VC
guarantee without confining to #(C) J
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Regularization Regularization and VC Theory

Another View of Augmented Error

Augmented Error VC Bound
Eaug(W) = Ein(W) + %WTW Eout(W) < Ein(W) + Q(H)
e regularizer w'w : complexity of a single hypothesis

e generalization price Q(#): complexity of a hypothesis set
o if 5Q(w) ‘represents’ Q(H) well,
Eaug is a better proxy of Eqt than Ej,

minimizing Eayg:

(heuristically) operating with the better proxy;
(technically) enjoying flexibility of whole
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Regularization Regularization and VC Theory

Effective VC Dimension

. A
min  Eaug(W) = Ein(W) + NQ(W)
weRd+1

* model complexity?
dvc(H) = d+ 1, because {w} ‘all considered’ during minimization
e {w} ‘actually needed’: H(C), with some C equivalent to A
L4 dvo (H( C)) .
effective VC dimension deger(H, A )
~~

min Eaug

explanation of regularization:
dvc(H) large,
while dere(H, A) small if A regularized
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Regularization Regularization and VC Theory

Fun Time

Consider the weight-decay regularization with regression. When
increasing A in A, what would happen with dggs(H,.A)?

O O 1T

O deer |

® O:rr = dyc(H) and does not depend on A
@ d:+ = 1126 and does not depend on A
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Regularization Regularization and VC Theory

Fun Time

Consider the weight-decay regularization with regression. When
increasing A in A, what would happen with dggs(H,.A)?

O O 1T

O deer |

® O:rr = dyc(H) and does not depend on A
@ d:+ = 1126 and does not depend on A

Reference Answer: @

larger A
<= smaller C
<= smaller H(C)
<= smaller dgrr
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Regularization General Regularizers

General Regularizers Q(w)
want: constraint in the

target-dependent: some properties of target, if known
* symmetry regularizer: > [q is odd] Wg

¢ plausible: direction towards or
stochastic/deterministic noise both non-smooth
° (L1) regularizer: )~ |wg| (next slide)

friendly: easy to optimize
* weight-decay (L2) regularizer: Y~ wj;
bad? :-): no worries, guard by A

augmented error = error err + regularizer

regularizer: target-dependent, , or friendly
ringing a bell? :-)
error measure: user-dependent, , or friendly
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Regularization General Regularizers

L2 and L1 Regularizer

FE}, = const. FE;, = const.

(2 Regularlzer L1 Regularizer

Q
aw) =" we = w3 Qw) =" |wol =l

* convex, differentiable ® convex, not differentiable
everywhere everywhere

® easy to optimize e sparsity in solution )

L1 useful if needing sparse solution J
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Regularization General Regularizers

The Optimal A

stochastic noise deterministic noise

1
= 0?2 =0.5
20.75
)
=
o
2 03 0?2 =0.25
<
[}
2
= 025 o2=0

0.5 1 15 2
Regularization Parameter, A

v

Expected Eout

0.6
N\ Q= 100
Q=30

Qp =15

I
=

e
i

05 . 1 5 3
Regularization Parameter, A

® more noise <= more regularization needed
—more bumpy road <= putting brakes more

® noise unknown—important to make proper choices

stay tuned for the next lecture! :-)

how to choose? J
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Regularization General Regularizers

Fun Time

Consider using a regularizer Q(w) = Y& 29wZ to work with
Legendre polynomial regression. Which kind of hypothesis does the
regularizer prefer?

@ symmetric polynomials satisfying h(x) = h(—x)
® low-dimensional polynomials

® high-dimensional polynomials

@ no specific preference
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Regularization General Regularizers

Fun Time

Consider using a regularizer Q(w) = Y& 29wZ to work with
Legendre polynomial regression. Which kind of hypothesis does the
regularizer prefer?

@ symmetric polynomials satisfying h(x) = h(—x)
® low-dimensional polynomials

® high-dimensional polynomials

@ no specific preference

Reference Answer: @

There is a higher ‘penalty’ for higher-order
terms, and hence the regularizer prefers
low-dimensional polynomials.
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Regularization General Regularizers

, Summary
©@ When Can Machines Learn?

® Why Can Machines Learn?
® How Can Machines Learn?
O How Can Machines Learn Better?

Lecture 13: Hazard of Overfitting

Lecture 14: Regularization

e Regularized Hypothesis Set
original H + constraint

o Weight Decay Regularization
add yw'w in Eayg

e Regularization and VC Theory
regularization decreases dgrr

e General Regularizers
target-dependent, [plausible], or [friendly]

v

® next: choosing from the so-many models/parameters
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