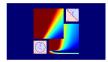
Machine Learning Foundations

(機器學習基石)



Lecture 2: Learning to Answer Yes/No

Hsuan-Tien Lin (林軒田)

htlin@csie.ntu.edu.tw

Department of Computer Science & Information Engineering

National Taiwan University (國立台灣大學資訊工程系)

Roadmap

When Can Machines Learn?

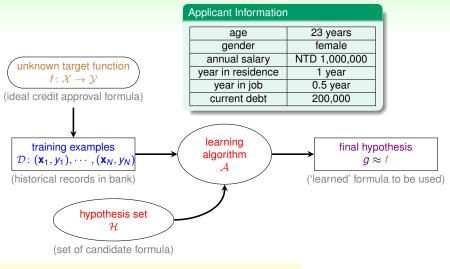
Lecture 1: The Learning Problem

 \mathcal{A} takes \mathcal{D} and \mathcal{H} to get g

Lecture 2: Learning to Answer Yes/No

- Perceptron Hypothesis Set
- Perceptron Learning Algorithm (PLA)
- Guarantee of PLA
- 2 Why Can Machines Learn?
- 3 How Can Machines Learn?
- 4 How Can Machines Learn Better?

Credit Approval Problem Revisited



what hypothesis set can we use?

A Simple Hypothesis Set: the 'Perceptron'

age	23 years
annual salary	NTD 1,000,000
year in job	0.5 year
current debt	200,000

• For $\mathbf{x} = (x_1, x_2, \dots, x_d)$ 'features of customer', compute a weighted 'score' and

approve credit if
$$\sum_{i=1}^{d} w_i x_i > \text{threshold}$$
 deny credit if $\sum_{i=1}^{d} w_i x_i < \text{threshold}$

• \mathcal{Y} : $\{+1(good), -1(bad)\}$, 0 ignored—linear formula $h \in \mathcal{H}$ are

$$h(\mathbf{x}) = \operatorname{sign}\left(\left(\sum_{i=1}^{d} \mathbf{w}_i x_i\right) - \operatorname{threshold}\right)$$

called 'perceptron' hypothesis historically

Vector Form of Perceptron Hypothesis

$$h(\mathbf{x}) = \operatorname{sign}\left(\left(\sum_{i=1}^{d} w_{i} x_{i}\right) - \operatorname{threshold}\right)$$

$$= \operatorname{sign}\left(\left(\sum_{i=1}^{d} w_{i} x_{i}\right) + \underbrace{\left(-\operatorname{threshold}\right) \cdot \left(+1\right)}_{w_{0}}\right)$$

$$= \operatorname{sign}\left(\sum_{i=0}^{d} w_{i} x_{i}\right)$$

$$= \operatorname{sign}\left(\mathbf{w}^{\mathsf{T}} \mathbf{x}\right)$$

 each 'taller' w represents a hypothesis h & is multiplied with 'taller' x —will use taller versions to simplify notation

what do perceptrons h 'look like'?

Perceptron Hypothesis Set

Some Notation Conventions

fonts

- normal x: just a scalar
- bold **x**: a vector (x_0, x_1, \dots, x_d) bold **w**: a vector (w_0, w_1, \dots, w_d)
- normal x_i: the i-th component in x normal w_i: the i-th component in w
- bold x_n: the n-th vector (in the data)
 bold w_t: the t-th vector (we will see)
- normal x_{n,i} (rarely used): the i-th component in x_n normal w_{t,i} (rarely used): the i-th component in w_t
- caligraphic as sets: input \mathcal{X} , output \mathcal{Y} , data \mathcal{D} , hypothesis \mathcal{H} , except algorithm \mathcal{A}

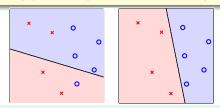
two important numbers

- N examples (\mathbf{x}_n, y_n) , indexed by n = 1, 2, ..., N
- d features, indexed by i = 0, 1, 2, ..., d

important to follow the notations from the very beginning

Perceptrons in \mathbb{R}^2

$$h(\mathbf{x}) = \text{sign}(w_0 + w_1x_1 + w_2x_2)$$



- customer features \mathbf{x} : points on the plane (or points in \mathbb{R}^d)
- labels *y*: \circ (+1), \times (-1)
- hypothesis h: visually lines $w_0 + w_1 x_1 + w_2 x_2 = 0$ (or hyperplanes in \mathbb{R}^d)
 - -positive on one side of a line, negative on the other side
- different line classifies customers differently

perceptrons ⇔ linear (binary) classifiers

Fun Time

Consider using a perceptron to detect spam messages.

Assume that each email is represented by the frequency of keyword occurrence, and output +1 indicates a spam. Which keywords below shall have large positive weights in a good perceptron for the task?

- 1 coffee, tea, hamburger, steak
- free, drug, fantastic, deal
- 3 machine, learning, statistics, textbook
- 4 national, Taiwan, university, coursera

Fun Time

Consider using a perceptron to detect spam messages.

Assume that each email is represented by the frequency of keyword occurrence, and output +1 indicates a spam. Which keywords below shall have large positive weights in a good perceptron for the task?

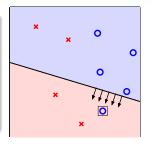
- 1 coffee, tea, hamburger, steak
- free, drug, fantastic, deal
- machine, learning, statistics, textbook
- 4 national, Taiwan, university, coursera

Reference Answer: 2

The occurrence of keywords with positive weights increase the 'spam score', and hence those keywords should often appear in spams.

Select g from \mathcal{H} $\mathcal{H} = \text{all possible perceptrons, } g = ?$

- want: $g \approx f$ (hard when f unknown)
- almost necessary: $g \approx f$ on \mathcal{D} , ideally $g(\mathbf{x}_n) = f(\mathbf{x}_n) = y_n$
- difficult: \mathcal{H} is of infinite size
- idea: start from some g_0 , and 'correct' its mistakes on \mathcal{D}



will represent g_0 by its weight vector \mathbf{w}_0

Perceptron Learning Algorithm

start from some \mathbf{w}_0 (say, $\mathbf{0}$), and 'correct' its mistakes on \mathcal{D}

For
$$t = 0, 1, ...$$

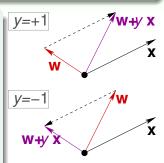
1 find a mistake of \mathbf{w}_t called $(\mathbf{x}_{n(t)}, \mathbf{y}_{n(t)})$

$$sign\left(\mathbf{w}_{t}^{T}\mathbf{x}_{n(t)}\right) \neq y_{n(t)}$$

(try to) correct the mistake by

$$\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + y_{n(t)} \mathbf{x}_{n(t)}$$

... until no more mistakes return last \mathbf{w} (called \mathbf{w}_{pla}) as g



That's it!

—A fault confessed is half redressed. :-)

Handling $sign(\cdot) = 0$

Perceptron Learning Algorithm

start from some \mathbf{w}_0 (say, $\mathbf{0}$), and 'correct' its mistakes on \mathcal{D}

When $\mathbf{w}_0 = \mathbf{0}$, technically sign $(\mathbf{w}_0^T \mathbf{x}_{n(0)}) = 0$, shall we update?

- convention -1: sign(0) = -1 (update if $y_{n(0)} = +1$)
- convention +1: sign(0) = +1 (update if $y_{n(0)} = -1$)
- convention 0: sign(0) = 0 (always update)
- convention r: sign(0) = random flip (50% chance of update)
- —usually does not matter much, as long as **w**₁ often becomes non-zero

 $\mathbf{w}_{t}^{T}\mathbf{x}_{n(t)}=0$ rarely happens in practice

Perceptron Learning Algorithm

For t = 0, 1, ...

- 1 find a mistake of \mathbf{w}_t called $(\mathbf{x}_{n(t)}, y_{n(t)})$: sign $(\mathbf{w}_t^\mathsf{T} \mathbf{x}_{n(t)}) \neq y_{n(t)}$
- (try to) correct the mistake by

$$\begin{bmatrix} v_{t+1,0} \\ v_{t+1,1} \end{bmatrix} = \begin{bmatrix} w_{t,0} \\ w_{t,1} \end{bmatrix} + v_{t,0} \begin{bmatrix} x_0 (= \text{what?}) \\ x_{n(t),1} \end{bmatrix}$$

 $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + y_{n(t)} \mathbf{x}_{n(t)}, \text{i.e.,}$

$$\begin{bmatrix} w_{t+1,0} \\ w_{t+1,1} \\ \dots \\ w_{t+1,d} \end{bmatrix} = \begin{bmatrix} w_{t,0} \\ w_{t,1} \\ \dots \\ w_{t,d} \end{bmatrix} + y_{n(t)} \begin{bmatrix} x_0 (= \text{what?}) \\ x_{n(t),1} \\ \dots \\ x_{n(t),d} \end{bmatrix}$$

... until no more mistakes return last **w** (called \mathbf{w}_{pla}) as g

each update changes $w_{t,0}$ by $y_{n(t)}$

Practical Implementation of PLA

start from some \mathbf{w}_0 (say, $\mathbf{0}$), and 'correct' its mistakes on \mathcal{D}

Cyclic PLA

For t = 0, 1, ...

• find the next mistake of \mathbf{w}_t called $(\mathbf{x}_{n(t)}, y_{n(t)})$

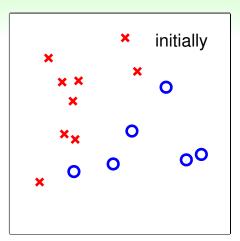
$$sign\left(\mathbf{w}_{t}^{\mathsf{T}}\mathbf{x}_{n(t)}\right) \neq y_{n(t)}$$

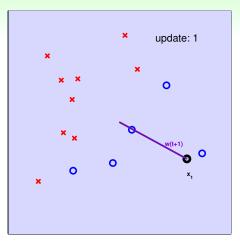
correct the mistake by

$$\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + y_{n(t)} \mathbf{x}_{n(t)}$$

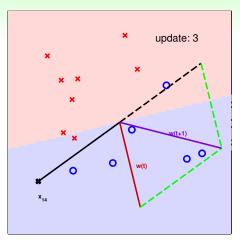
... until a full cycle of not encountering mistakes

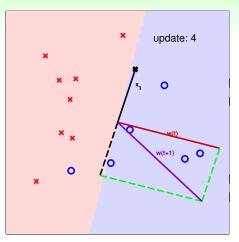
next can follow naïve cycle $(1, \dots, N)$ or precomputed random cycle

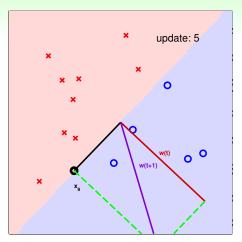


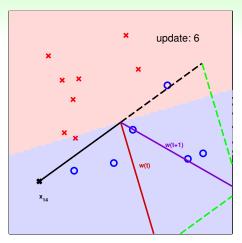


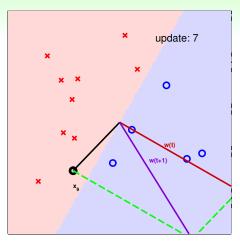


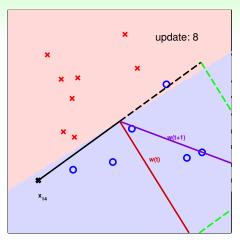


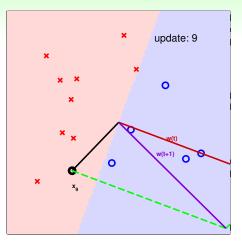


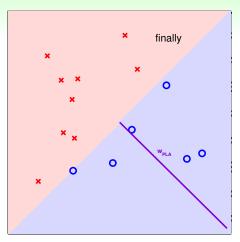












Fun Time

Let's try to think about why PLA may work.

Let n = n(t), according to the rule of PLA below, which formula is true?

$$sign\left(\mathbf{w}_{t}^{T}\mathbf{x}_{n}\right) \neq y_{n}, \quad \mathbf{w}_{t+1} \leftarrow \mathbf{w}_{t} + y_{n}\mathbf{x}_{n}$$

Fun Time

Let's try to think about why PLA may work.

Let n = n(t), according to the rule of PLA below, which formula is true?

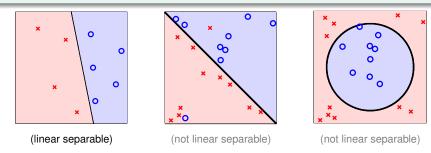
$$sign\left(\mathbf{w}_{t}^{T}\mathbf{x}_{n}\right) \neq y_{n}, \quad \mathbf{w}_{t+1} \leftarrow \mathbf{w}_{t} + y_{n}\mathbf{x}_{n}$$

Reference Answer: (3)

Simply multiply the second part of the rule by $y_n \mathbf{x}_n$. The result shows that the rule somewhat 'tries to correct the mistake.'

Linear Separability

- if PLA halts (i.e. no more mistakes),
 (necessary condition) D allows some w to make no mistake
- call such \mathcal{D} linear separable



assume linear separable \mathcal{D} , does PLA always halt?

PLA Fact: w_t Gets More Aligned with w_t

linear separable $\mathcal{D} \Leftrightarrow \text{exists perfect } \mathbf{w}_f \text{ such that } y_n = \text{sign}(\mathbf{w}_f^T \mathbf{x}_n)$

• \mathbf{w}_f perfect hence every \mathbf{x}_n correctly away from line:

$$y_{n(t)}\mathbf{w}_{f}^{\mathsf{T}}\mathbf{x}_{n(t)} \geq \min_{n} y_{n}\mathbf{w}_{f}^{\mathsf{T}}\mathbf{x}_{n} > 0$$

• $\mathbf{w}_{t}^{\mathsf{T}}\mathbf{w}_{t} \uparrow$ by updating with any $(\mathbf{x}_{n(t)}, y_{n(t)})$

$$\mathbf{w}_{f}^{T}\mathbf{w}_{t+1} = \mathbf{w}_{f}^{T} \left(\mathbf{w}_{t} + y_{n(t)}\mathbf{x}_{n(t)}\right)$$

$$\geq \mathbf{w}_{f}^{T}\mathbf{w}_{t} + \min_{n} y_{n}\mathbf{w}_{f}^{T}\mathbf{x}_{n}$$

$$> \mathbf{w}_{f}^{T}\mathbf{w}_{t} + \mathbf{0}.$$

 \mathbf{w}_t appears more aligned with \mathbf{w}_f after update (really?)

PLA Fact: **w**_t Does Not Grow Too Fast

 \mathbf{w}_t changed only when mistake

$$\Leftrightarrow \operatorname{sign}\left(\mathbf{w}_{t}^{T}\mathbf{x}_{n(t)}\right) \neq y_{n(t)} \Leftrightarrow y_{n(t)}\mathbf{w}_{t}^{T}\mathbf{x}_{n(t)} \leq 0$$

• mistake 'limits' $\|\mathbf{w}_t\|^2$ growth, even when updating with 'longest' \mathbf{x}_n

$$\begin{aligned} \|\mathbf{w}_{t+1}\|^2 &= \|\mathbf{w}_t + y_{n(t)}\mathbf{x}_{n(t)}\|^2 \\ &= \|\mathbf{w}_t\|^2 + 2y_{n(t)}\mathbf{w}_t^T\mathbf{x}_{n(t)} + \|y_{n(t)}\mathbf{x}_{n(t)}\|^2 \\ &\leq \|\mathbf{w}_t\|^2 + 0 + \|y_{n(t)}\mathbf{x}_{n(t)}\|^2 \\ &\leq \|\mathbf{w}_t\|^2 + \max_{n} \|y_n\mathbf{x}_n\|^2 \end{aligned}$$

start from $\mathbf{w}_0 = \mathbf{0}$, after T mistake corrections,

$$rac{\mathbf{w}_f^T}{\|\mathbf{w}_f\|} rac{\mathbf{w}_T}{\|\mathbf{w}_T\|} \geq \sqrt{T} \cdot \mathsf{constant}$$

Let's upper-bound T, the number of mistakes that PLA 'corrects'.

Define
$$R^2 = \max_{n} \|\mathbf{x}_n\|^2$$
 $\rho = \min_{n} y_n \frac{\mathbf{w}_f^T}{\|\mathbf{w}_f\|} \mathbf{x}_n$

We want to show that $T \leq \square$. Express the upper bound \square by the two terms above.

- $\mathbf{1} R/\rho$
- **2** R^2/ρ^2
- $3 R/\rho^2$
- Φ^2/R^2

Let's upper-bound T, the number of mistakes that PLA 'corrects'.

Define
$$R^2 = \max_{n} \|\mathbf{x}_n\|^2$$
 $\rho = \min_{n} y_n \frac{\mathbf{w}_f^T}{\|\mathbf{w}_f\|} \mathbf{x}_n$

We want to show that $T \leq \square$. Express the upper bound \square by the two terms above.

- \bigcirc R/ρ
- **2** R^2/ρ^2
- $3 R/\rho^2$
- ρ^{2}/R^{2}

Reference Answer: (2)

The maximum value of $\frac{\mathbf{w}_t^T}{\|\mathbf{w}_t\|} \frac{\mathbf{w}_t}{\|\mathbf{w}_t\|}$ is 1. Since T mistake corrections increase the inner product by \sqrt{T} constant, the maximum number of corrected mistakes is $1/\text{constant}^2$.

Guarantee of PLA

PLA Mistake Bound

inner product grows fast

$$\mathbf{w}_f^T \mathbf{w}_{t+1} \ge \mathbf{w}_f^T \mathbf{w}_{t+1} \underbrace{\min_{n} y_n \mathbf{w}_f^T \mathbf{x}_n}_{\rho \cdot \|\mathbf{w}_f\|}$$

length² grows slowly

$$\|\mathbf{w}_{t+1}\|^2 \le \|\mathbf{w}_t\|^2 + \underbrace{\max_{n} \|\mathbf{x}_n\|^2}_{B^2}$$

Magic Chain!

$$\begin{array}{lll} \mathbf{w}_{f}^{T}\mathbf{w}_{1} & \geq & \mathbf{w}_{f}^{T}\mathbf{w}_{0} + \rho \cdot \|\mathbf{w}_{f}\| \\ \mathbf{w}_{f}^{T}\mathbf{w}_{2} & \geq & \mathbf{w}_{f}^{T}\mathbf{w}_{1} + \rho \cdot \|\mathbf{w}_{f}\| \\ \mathbf{w}_{f}^{T}\mathbf{w}_{3} & \geq & \mathbf{w}_{f}^{T}\mathbf{w}_{2} + \rho \cdot \|\mathbf{w}_{f}\| \\ & \cdots \\ \mathbf{w}_{f}^{T}\mathbf{w}_{T} & \geq & \mathbf{w}_{f}^{T}\mathbf{w}_{T-1} + \rho \cdot \|\mathbf{w}_{f}\| \end{array}$$

Magic Chain!

$$\begin{aligned} \|\mathbf{w}_{1}\|^{2} & \leq & \|\mathbf{w}_{0}\|^{2} + R^{2} \\ \|\mathbf{w}_{2}\|^{2} & \leq & \|\mathbf{w}_{1}\|^{2} + R^{2} \\ \|\mathbf{w}_{3}\|^{2} & \leq & \|\mathbf{w}_{2}\|^{2} + R^{2} \\ & \cdots \\ \|\mathbf{w}_{T}\|^{2} & \leq & \|\mathbf{w}_{T-1}\|^{2} + R^{2} \end{aligned}$$

start from $\boldsymbol{w}_0 = \boldsymbol{0},$ after T mistake corrections,

$$1 \geq \frac{\mathbf{w}_f^T}{\|\mathbf{w}_f\|} \frac{\mathbf{w}_T}{\|\mathbf{w}_T\|} \geq \frac{T\rho \|\mathbf{w}_f\|}{\|\mathbf{w}_f\| \sqrt{T}R} \Longrightarrow T \leq \left(\frac{R}{\rho}\right)^2$$

More about PLA

Guarantee

as long as linear separable and correct by mistake

- inner product of w_t and w_t grows fast; length of w_t grows slowly
- PLA 'lines' are more and more aligned with w_f ⇒ halts

Pros

simple to implement, fast, works in any dimension d

Cons

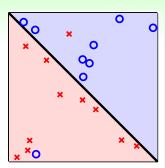
- ullet 'assumes' linear separable ${\mathcal D}$ to halt
 - —property unknown in advance (no need for PLA if we know \mathbf{w}_{t})
- not fully sure how long halting takes (ρ depends on \mathbf{w}_f) —though practically fast

what if \mathcal{D} not linear separable?

how to at least get $g \approx f$ on noisy \mathcal{D} ?

(set of candidate formula)

Line with Noise Tolerance



- assume 'little' noise: $y_n = f(\mathbf{x}_n)$ usually
- if so, $g \approx f$ on $\mathcal{D} \Leftrightarrow y_n = g(\mathbf{x}_n)$ usually
- how about

$$\mathbf{w}_g \leftarrow \underset{\mathbf{w}}{\operatorname{argmin}} \sum_{n=1}^N \left[y_n \neq \operatorname{sign}(\mathbf{w}^T \mathbf{x}_n) \right]$$

—NP-hard to solve, unfortunately

will discuss other solutions for an 'approximately good' *g* later?

Summary

1 When Can Machines Learn?

Lecture 1: The Learning Problem

Lecture 2: Learning to Answer Yes/No

- Perceptron Hypothesis Set hyperplanes/linear classifiers in R^d
- Perceptron Learning Algorithm (PLA)
 correct mistakes and improve iteratively
- Guarantee of PLA no mistake eventually if linear separable
- next: the zoo of learning problems
- 2 Why Can Machines Learn?
- 3 How Can Machines Learn?
- 4 How Can Machines Learn Better?