
Machine Learning (NTU, Fall 2023) instructor: Hsuan-Tien Lin

Homework #6
RELEASE DATE: 11/29/2023

RED CORRECTION: 12/16/2023 21:30

DUE DATE: 12/20/2023 (THREE WEEKS, YEAH!!), BEFORE 13:00 on GRADESCOPE

QUESTIONS ARE WELCOMED ON DISCORD (INFORMALLY) OR NTU COOL (FORMALLY).

You will use Gradescope to upload your scanned/printed solutions. For problems marked with (*), please
follow the guidelines on the course website and upload your source code to Gradescope as well. Any
programming language/platform is allowed.

Any form of cheating, lying, or plagiarism will not be tolerated. Students can get zero scores and/or fail
the class and/or be kicked out of school and/or receive other punishments for those kinds of misconducts.

Discussions on course materials and homework solutions are encouraged. But you should write the final
solutions alone and understand them fully. Books, notes, and Internet resources can be consulted, but
not copied from.

Since everyone needs to write the final solutions alone, there is absolutely no need to lend your homework
solutions and/or source codes to your classmates at any time. In order to maximize the level of fairness
in this class, lending and borrowing homework solutions are both regarded as dishonest behaviors and will
be punished according to the honesty policy.

You should write your solutions in English or Chinese with the common math notations introduced in
class or in the problems. We do not accept solutions written in any other languages.

This homework set comes with 240 points and 20 bonus points. In general, every home-
work set would come with a full credit of 240 points, with some possible bonus points.

More about Support Vector Machines

1. (20 points) When talking about non-uniform voting in aggregation, we mentioned that α can be
viewed as a weight vector learned from any linear algorithm coupled with the following transform:

ϕ(x) =
(
g1(x), g2(x), · · · , gT (x)

)
.

When studying kernel methods, we mentioned that the kernel is simply a computational short-cut
for the inner product (ϕ(x))T (ϕ(x′)). In this problem, we mix the two topics together using the
decision stumps as our gt(x).

Assume that the input vectors contain only integers between (including) L and R, where L < R.

Consider the decision stumps gs,i,θ(x) = s · sign
(
xi − θ

)
, where

i ∈ {1, 2, · · · , d},
d is the finite dimensionality of the input space,

s ∈ {−1,+1},
θ ∈ {θ1 = L+ 0.5, θ2 = L+ 1.5, . . . , θk = R− 0.5}.

Define ϕds(x) =

(
g+1,1,θ1(x), g+1,1,θ2(x), . . . , g+1,1,θk(x), . . . , g−1,d,θk(x)

)
as a column vector.

What is Kds(x,x
′) = (ϕds(x))

T (ϕds(x
′))? Prove your answer.

(Hint: This result shows that aggregation learning with SVMs is possible. Those who are interested
in knowing how perceptrons and decision trees can be used instead of decision stumps during kernel
construction can read the following early work)

https://www.csie.ntu.edu.tw/~htlin/paper/doc/infkernel.pdf .
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2. (20 points) For a given valid kernel K, consider a new kernel K̃(x,x′) = uK(x,x′) + v for some
u > 0. Note that v can be any real value. When v ≥ 0, it is easy to prove that K̃ is still a
valid kernel; when v < 0, however, K̃ may not always be a valid kernel. Prove that for the dual
of soft-margin support vector machine, using K̃ along with a new C̃ = C

u instead of K with the
original C leads to an equivalent gsvm classifier. That is, the optimal (α, b) obtained leads to the
same decision boundary.

(Note: This result can be used to shift and scale the kernel function derived in the previous problem
to a simpler form (even not as a valid kernel) when coupling it with the soft-margin SVM.)

Blending and Bagging

3. (20 points) Consider an aggregated binary classifier G that is constructed by uniform blending on
17 binary classifiers {gt}17t=1. That is,

G(x) = sign

(
17∑
t=1

gt(x)

)

Assume that each gt is of test 0/1 error Eout(gt) = et > 0. Define the total error E =
∑17

t=1 et.

What is the largest value of Eout(G)
E ? Prove your result.

(Note: The ratio roughly shows how G reduces the total error made by the hypotheses.)

4. (20 points) If bootstrapping is used to sample exactly 3
4N examples out ofN , what is the probability

that an example is not sampled when N is very large? List your derivation steps.

(Note: This is just an “easy” exercise of letting you think about the amount of OOB data in
bagging/random forest.))

Adaptive Boosting and Gradient Boosting

5. (20 points) Consider applying the AdaBoost algorithm on a binary classification data set where
98% of the examples are positive. Because there are so many positive examples, the base algorithm

within AdaBoost returns a constant classifier g1(x) = +1 in the first iteration. Let u
(2)
n be the

individual example weight of each example in the second iteration. What is∑
n : yn>0 u

(2)
n∑

n : yn<0 u
(2)
n

?

Prove your answer.

(Note: This is designed to help you understand how AdaBoost can deal with “imbalanced” data
immediately after the first iteration.)

6. (20 points) For the AdaBoost algorithm introduced in Lectures 208 and 211, let Ut =
∑N

n=1 u
(t)
n .

That is, U1 = 1 (you are very welcome! ;-) ). Assume that 0 < ϵt < 1
2 for each hypothesis gt.

Express UT+1

U1
in terms of ϵ1, ϵ2, . . . , ϵT . Prove your answer.

(Hint: Consider checking Ut+1

Ut
first. The result is the backbone of proving that AdaBoost will

converge within O(logN) iterations.)

7. (20 points) For the gradient boosted decision tree, after updating all sn in iteration t using the

steepest η as αt, prove that
∑N

n=1(yn − sn)gt(xn) = 0.

(Note: This special value may tell us some important physical property on the relationship between
the vectors [y1 − s1, y2 − s2, . . . , yN − sN ] and [gt(x1), gt(x2), . . . , gt(xN )].
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Neural Networks

8. (20 points) For a Neural Network with at least one hidden layer and tanh(s) as the transformation

functions on all neurons (including the output neuron), when all the initial weights w
(ℓ)
ij are set to

0, what gradient components are also 0? Prove your answer.

(Note: This result tells you that all-0 initialization may make it impossible for back-propagation to
update some weights.)

Experiments with Decision Trees and Random Forests

In the following problems, you are asked to implement a preliminary random forest algorithm. You need
to implement everything by yourself without using any well-implemented packages.

9. (20 points, *) First, let’s implement a simple C&RT algorithm without pruning using the squared
error as the impurity measure, as introduced in the class. For the decision stump used in branching,
if you are branching with feature i, please sort all the xn,i values to form (at most) N +1 segments
of equivalent θ, and then pick θ within the median of the segment. If multiple (i, θ) produce the
best split, pick the one with the smallest i (and if there is a tie again, pick the one with the smallest
θ).

Please run the algorithm on the following set for training:

http://www.csie.ntu.edu.tw/~htlin/course/ml23fall/hw6/hw6_train.dat

and the following file as our test data set for evaluating Eout:

http://www.csie.ntu.edu.tw/~htlin/course/ml23fall/hw6/hw6_test.dat

The datasets are in LIBSVM format and are processed from

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/regression/abalone

What is the Eout(g), where g is the unpruned decision tree returned from your C&RT algorithm
and Eout is evaluated using the squared error?

10. (20 points, *) Next, we implement the random forest algorithm by coupling bagging (by sampling
with replacement) with N ′ = 0.5N with your unpruned decision tree in the previous problem. You
do not need to do random feature selection or expansion. Produce T = 2000 trees with bagging.
Let g1, g2, . . . , g2000 denote the 2000 trees generated. Plot a histogram of Eout(gt), where Eout is
evaluated using the squared error.

11. (20 points, *) Let G(x) = 1
T

∑T
t=1 gt(x) be the random forest formed by the trees above. Plot a

scatter plot of (Ein(gt), Eout(gt)) along with a clear mark of where (Ein(G), Eout(G)) is. Describe
your findings.

12. (20 points, *) Let Gt(x) =
1
t

∑t
τ=1 gτ (x) be the random forest formed by the first t trees. Plot the

Eout(gt) as a function of t, and plot Eout(Gt) as a function of t on the same figure. Describe your
findings.

Bonus: Crazy XOR

13. (Bonus 20 points) Construct a d-d-1 feed-forward neural network with sign(s) as the transfor-
mation function (such a neural network is also called a Linear Threshold Circuit) to implement
XOR
(
(x)1, (x)2, . . . , (xd)

)
. Then, prove that it is impossible to implement XOR

(
(x)1, (x)2, . . . , (xd)

)
with any d-(d− 1)-1 feed-forward neural network with sign(s) as the transformation function.
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