
Machine Learning (NTU, Fall 2023) instructor: Hsuan-Tien Lin

Homework #4
RELEASE DATE: 11/01/2023

RED CORRECTION: 11/06/2023 05:30

BLUE CORRECTION: 11/11/2023 15:00

DUE DATE: 11/15/2023, BEFORE 13:00 on GRADESCOPE

QUESTIONS ARE WELCOMED ON DISCORD (INFORMALLY) OR NTU COOL (FORMALLY).

You will use Gradescope to upload your scanned/printed solutions. For problems marked with (*), please
follow the guidelines on the course website and upload your source code to Gradescope as well. Any
programming language/platform is allowed.

Any form of cheating, lying, or plagiarism will not be tolerated. Students can get zero scores and/or fail
the class and/or be kicked out of school and/or receive other punishments for those kinds of misconducts.

Discussions on course materials and homework solutions are encouraged. But you should write the final
solutions alone and understand them fully. Books, notes, and Internet resources can be consulted, but
not copied from.

Since everyone needs to write the final solutions alone, there is absolutely no need to lend your homework
solutions and/or source codes to your classmates at any time. In order to maximize the level of fairness
in this class, lending and borrowing homework solutions are both regarded as dishonest behaviors and will
be punished according to the honesty policy.

You should write your solutions in English or Chinese with the common math notations introduced in
class or in the problems. We do not accept solutions written in any other languages.

This homework set comes with 240 points and 20 bonus points. In general, every home-
work set would come with a full credit of 240 points, with some possible bonus points.

Beyond Binary Linear Classification

1. (20 points) If some algorithm always takes a total CPU time of aN3 for training a binary classifier
on a size-N binary classification data set. Consider a size-N K-class classification data set where
each class is of size N/K. What is the total CPU time needed for training a K-class classifier via
one-versus-one decomposition on the data set (ignoring the minor time needed for re-labeling the
data set for the sub-problems)? List your derivation steps.

(Note: This result tells you that one-versus-one may actually be computationally “cheap” because
each sub-problem has fewer data.)

2. (20 points) Consider the following matrix, which is called the Vandermonde matrix.

V =


1 x1 x2

1 . . . xN−1
1

1 x2 x2
2 . . . xN−1

2
...

...
... . . .

...

1 xN x2
N . . . xN−1

N


An N by N Vandermonde matrix has a determinant of

det(V) =
∏

1≤n<m≤N

(xm − xn)

and is thus invertible if all {xn}Nn=1 are different.

Consider some one-dimensional data {(xn, yn)}Nn=1 where xn ∈ R and yn ∈ R. Assume that all
{xn}Nn=1 are different. Obtain a hypothesis g(x) = w̃TΦQ(x) by applying a Q-th order polynomial
transform zn = ΦQ(xn), and running linear regression on {(zn, yn)}Nn=1 to get some w̃. Use the

1 of 6

Machine Learning (NTU, Fall 2023) instructor: Hsuan-Tien Lin

property of the Vandermonde matrix above to prove that there exists some Q such that Ein(g) = 0
when Ein is measured by the squared error.

(Note: This result tells you that if you transform the data with enough “power” within the polyno-
mials, you can always fit the training data perfectly.)

3. (20 points) Assume that a transformer (no, not chat-Generative-Pretrained-Transformer!) peeks
some one-dimensional examples and decides the following transform Φ “intelligently” from the data
of size N . The transform maps x ∈ R to z = (z1, z2, . . . , zN) ∈ RN , where

(Φ(x))n = zn = Jx = xnK .

Assume that each training and testing example is generated i.i.d. from a joint distribution p(x, y)
where x is sampled uniformly from [−1, 1] and y = x + ϵ, where ϵ is independently sampled from
a Gaussian distribution with mean 0 and variance 1. For simplicity, you can assume that all xn

are different in the training data set. Consider a learning algorithm that performs linear regression
after the feature transform (for simplicity, please exclude z0 = 1) to get a g(x) = w̃TΦ(x). Consider
the squared error. What is Ein(g)? What is Eout(g)? List your derivation steps.

(Note: This result tells you that “snooping” your data too much can be a bad idea.)

Combatting Overfitting

4. (20 points) On page 20 of Lecture 13, we discussed about adding “virtual examples” (hints) to help
combat overfitting. One way of generating virtual examples is to add a small noise to the input
vector x ∈ Rd+1 (including the 0-th component x0) For each (x1, y1), (x2, y2), . . . , (xN , yN) in our
training data set, assume that we generate virtual examples (x̃1, y1), (x̃2, y2), . . . , (x̃N , yN) where
x̃n is simply xn + ϵ and each component of the noise vector ϵ ∈ Rd+1 is generated i.i.d. from a
uniform distribution within [−δ, δ]. The vector ϵ is a random vector that varies for each virtual
example.

Recall that when training the linear regression model, we need to calculate XTX first. Define the
hinted input matrix

Xh =

 | . . . | | . . . |
x1 . . . xN x̃1 . . . x̃N

| . . . | | . . . |

T

.

What is the expected value E(XT
hXh) as a function of X and δ, where the expectation is taken over

the (uniform)-noise generating process above? Prove your result.

(Note: This result may ring a bell on how such virtual examples can act like regularizers.)

5. (20 points) Consider the augmented error

Eaug(w) = Ein(w) +
λ

N
wTw

with some λ > 0. When minimizing Eaug with the fixed-learning rate gradient descent algorithm
with a learning rate η > 0, the update rule is

wt+1 ← α(wt − β∇Ein(wt)).

What are α and β? Prove your result.

(Note: You should get some α < 1, which means that the weight vector is decayed (decreased). This
is why L2 regularizer is often also called the weight-decay regularizer.)

2 of 6

Machine Learning (NTU, Fall 2023) instructor: Hsuan-Tien Lin

6. (20 points) Consider a one-dimensional data set {(xn, yn)}Nn=1 where each xn ∈ R and yn ∈ R.
Then, solve the following one-variable regularized linear regression problem:

min
w∈R

1

N

N∑
n=1

(w · xn − yn)
2 +

λ

N
w2.

If the optimal solution to the problem above is w∗, it can be shown that w∗ is also the optimal
solution of

min
w∈R

1

N

N∑
n=1

(w · xn − yn)
2 subject to w2 ≤ C

with C = (w∗)2. This allows us to express the relationship between C in the constrained optimiza-
tion problem and λ in the augmented optimization problem for any λ > 0. In particular,

λ =
α√
C

+ β

What are α and β? Prove your result.

(Note: This should allow you to see how λ decreases [when λ > 0] as C increases [until some upper
bound].)

7. (20 points) Scaling can affect regularization. Consider a data set {(xn, yn)}Nn=1. Define Φ(x) =
Vx where V is a diagonal matrix with the i-th diagonal component storing a positive value to
scale the i-th feature. Now, conduct L1-regularized linear regression with the transformed data
{(Φ(xn), yn)}Nn=1.

min
w̃∈Rd+1

1

N

N∑
n=1

(w̃TΦ(xn)− yn)
2 +

λ

N
∥w̃∥1

The problem is equivalent to the following regularized linear regression problem on the original
data with a different regularizer.

min
w∈Rd+1

1

N

N∑
n=1

(wTxn − yn)
2 +

λ

N
Ω(w)

What is Ω(w)? How do the optimal w̃ and the optimal w correspond to each other? Prove your
result.

(Note: The result shows you how scaling the data effectively changes the regularizer.)

8. (20 points) Consider a binary classification algorithm Aminority, which returns a constant classifier
that always predicts the minority class (i.e., the class with fewer instances in the data set that
it sees). As you can imagine, the returned classifier is the worst-Ein one among all constant
classifiers. Consider the 0/1 error. For a binary classification data set with N positive examples
and N negative examples, what is Eloocv(Aminority)? Prove your result.

(Note: This result may tell you that in some special situations, leave-one-out cross-validation is
not always trustworthy.)

3 of 6

Machine Learning (NTU, Fall 2023) instructor: Hsuan-Tien Lin

Learning Principles

9. In Lecture 16, we talked about the probability to fit data perfectly when the labels are random. For
instance, page 6 of Lecture 16 shows that the probability of fitting the data perfectly with decision
stumps is (2N)/2N . Consider five points in R2 as input vectors x1 = (+1,+1), x2 = (+1,−1),
x3 = (−1,+1), x4 = (−1,−1), x5 = (2, 0), and a 2D perceptron model that minimizes Ein(w) to
the lowest possible value. One way to measure the power of the model is to consider five random
labels y1, y2, y3, y4, y5, each in ±1 and generated by i.i.d. fair coin flips, and then compute

Ey1,y2,y3,y4,y5

(
min

w∈R2+1
Ein(w)

)
in terms of the 0/1 error. For a perfect fitting, minw Ein(w) will be 0; for a less perfect fitting (when
the data is not linearly separable), minw Ein(w) will be some non-zero value. The expectation above
averages over all 32 possible combinations of y1, y2, y3, y4, y5. What is the value of the expectation?
Prove your result.

(Note: It can be shown that 1 minus twice the expected value above is the same as the so-called
empirical Rademacher complexity of 2D perceptrons. Rademacher complexity, similar to the VC
dimension, is another tool to measure the complexity of a hypothesis set. If a hypothesis set shatters
some data points, zero Ein can always be achieved and thus Rademacher complexity is 1; if a
hypothesis set cannot shatter some data points, Rademacher complexity provides a soft measure of
how “perfect” the hypothesis set is.)

Experiments with Regularized Logistic Regression

Consider L2-regularized logistic regression with third-order polynomial transformation.

wλ = argminw
λ

N
∥w∥2 + 1

N

N∑
n=1

ln(1 + exp(−ynwTΦ3(xn))),

Here Φ3 is the third-order polynomial transformation introduced on page 2 of Lecture 12 (with Q = 3),
defined as

Φ3(x) = (1, x1, x2, . . . , xd, x
2
1, x1x2, . . . , x1xd, x

2
2, x2x3, . . . , x2xd, . . . , x

2
d, x

3
1, . . . , x

3
d)

Given that d = 6 in the following data sets, your Φ3(x) should be of 84 dimensions (including the
constant dimension).

Next, we will take the following file as our training data set D:
http://www.csie.ntu.edu.tw/~htlin/course/ml23fall/hw4/hw4_train.dat

and the following file as our test data set for evaluating Eout:

http://www.csie.ntu.edu.tw/~htlin/course/ml23fall/hw4/hw4_test.dat

We call the algorithm for solving the problem above as Aλ. The problem guides you to use LIBLIN-
EAR (https://www.csie.ntu.edu.tw/~cjlin/liblinear/), a machine learning package developed in
our university, to solve this problem. In addition to using the default options, what you need to do when
running LIBLINEAR are

• set option -s 0, which corresponds to solving regularized logistic regression

• set option -c C, with a parameter value of C calculated from the λ that you want to use; read
README of the software package to figure out how C and your λ should relate to each other

• set option -e 0.000001, which corresponds to getting a solution that is really really close to the
optimal solution

4 of 6

Machine Learning (NTU, Fall 2023) instructor: Hsuan-Tien Lin

LIBLINEAR can be called from the command line or from major programming languages like python.
If you run LIBLINEAR in the command line, please upload the scripts that include the commands; if
you run LIBLINEAR from any programming language, please include your code.

We will consider the data set as a binary classification problem and take the “regression for classifi-
cation” approach with regularized logistic regression (see page 6 of Lecture 10). So please evaluate all
errors below with the 0/1 error.

10. (20 points, *) Select the best λ∗ as

argmin
log10 λ∈{−6,−4,−2,0,2}

Ein(wλ).

Break the tie, if any, by selecting the largest λ. What is log10(λ
∗)?

11. (20 points, *) Now randomly split the given training examples in D to two sets: 120 examples as
Dtrain and 80 as Dval. Run Aλ on only Dtrain to get w−

λ (the weight vector within the g− returned),
and validate w−

λ with Dval to get Eval(w
−
λ). Select the best λ∗ as

argmin
log10 λ∈{−6,−4,−2,0,2}

Eval(w
−
λ).

Break the tie, if any, by selecting the largest λ. Repeat the experiment above for 128 times, each
with a different random split. Plot a histogram on the distribution of log10(λ

∗) selected from the
128 experiments.

12. (20 points, *) Now randomly split the given training examples in D to five folds, 40 being fold 1,
another 40 being fold 2, and so on. Select the best λ∗ as

argmin
log10 λ∈{−6,−4,−2,0,2}

Ecv(Aλ).

Break the tie, if any, by selecting the largest λ. Repeat the experiment above for 128 times, each
with a different random split. Plot a histogram on the distribution of log10(λ

∗) selected from the
128 experiments. Compare your result with the log10(λ

∗) selected for the two problems above.
Describe your findings.

5 of 6

Machine Learning (NTU, Fall 2023) instructor: Hsuan-Tien Lin

Bonus: Scale or Regularize?

13. (Bonus 20 points) Dr. Regularize recently learned regularization and thought that its basic goal
is to restrict the length of the weight vector w to be less than

√
C. Ze then designed a “new”

regularization algorithm—simply performing linear regression first to get some wlin, and then get
wC = wlin

∥wlin∥ ·
√
C. Then, wC would be of length

√
C only. Ze then asks chatGPT whether

this is equivalent to the C-constrained regularization (and hence equivalent to λ-penalized L2
regularization) that ze learned in class, and got the following answer.

After reading the answer from chatGPT, ze still does not understand why scaling after linear regres-
sion is different from the C-constrained linear regression. Please help ze understand chatGPT’s
answer by proving that if wlin ̸= 0 and ∥wlin∥2 > C, then wC solves the C-constrained linear
regression problem

min
w

Ein(w) subject to wTw ≤ C.

if and only if XTX = αI, meaning that there is no dependence between the features.

(Hint: The “no dependence” condition tells you that regularized regression (i.e. ridge regression)
handles the dependence cases better, which corresponds to the “multicollinearity” issue mentioned
by chatGPT.)

6 of 6

