
Machine Learning (NTU, Fall 2023) instructor: Hsuan-Tien Lin

Homework #3
RELEASE DATE: 10/12/2023

RED CORRECTION: 10/26/2023 06:00

YOU GET TWO MORE GOLD MEDALS THIS SEMESTER
BECAUSE OF THE DELAYED RELEASE. YEAH!!

DUE DATE: 11/01/2023, BEFORE 13:00 on GRADESCOPE

QUESTIONS ARE WELCOMED ON DISCORD (INFORMALLY) OR NTU COOL (FORMALLY).

You will use Gradescope to upload your scanned/printed solutions. For problems marked with (*), please
follow the guidelines on the course website and upload your source code to Gradescope as well. Any
programming language/platform is allowed.

Any form of cheating, lying, or plagiarism will not be tolerated. Students can get zero scores and/or fail
the class and/or be kicked out of school and/or receive other punishments for those kinds of misconducts.

Discussions on course materials and homework solutions are encouraged. But you should write the final
solutions alone and understand them fully. Books, notes, and Internet resources can be consulted, but
not copied from.

Since everyone needs to write the final solutions alone, there is absolutely no need to lend your homework
solutions and/or source codes to your classmates at any time. In order to maximize the level of fairness
in this class, lending and borrowing homework solutions are both regarded as dishonest behaviors and will
be punished according to the honesty policy.

You should write your solutions in English or Chinese with the common math notations introduced in
class or in the problems. We do not accept solutions written in any other languages.

This homework set comes with 240 points and 20 bonus points. In general, every home-
work set would come with a full credit of 240 points, with some possible bonus points.

Noise and Error

1. (20 points) Consider a binary classification problem, where Y = {−1,+1}. Assume a noisy scenario
where the data is generated i.i.d. from some P (x, y). In class, we discussed that when the 0/1
error function (i.e. classification error) is considered, calculating the “ideal mini-target” on each x
reveals the hidden target function of

f0/1(x) = argmaxy∈{−1,+1}P (y|x) = sign

(
P (+1|x)− 1

2

)
.

Instead of the 0/1 error, if we consider the CIA error function, where a false positive (classifying a
negative example as a positive one) is 1000 times more important than a false negative, the hidden
target should be changed to

fcia(x) = sign
(
P (+1|x)− α

)
.

Prove what the value of α should be.

2. (20 points) Consider a binary classification task, where God gives you some noiseless data i.i.d.
from an unknown distribution P (x) and an unknown target function f(x) that maps from X to
{−1,+1}. After you use the data to obtain some g(x) that suffers

Eout(g) = Ex∼P (x) Jg(x) ̸= f(x)K (here E means expectation, as shown in class slides)

= Ex∼P (x) Jg(x) ̸= f(x)K (or if you like the more beautiful font E for expectation).

Now, assume that g(x) is put in a noisy test environment where

P (y = +f(x)|x) = 1− ϵ

P (y = −f(x)|x) = ϵ.
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Derive
E(x,y)∼P (x,y) Jg(x) ̸= yK

as a function of Eout(g) and ϵ.

Linear Regression

3. (20 points) Consider a hypothesis set that contains hypotheses of the form h(x) = wx for x ∈ R.
Combine the hypothesis set with the squared error function to minimize

Ein(w) =
1

N

N∑
n=1

(h(xn)− yn)
2

on a given data set {(xn, yn)}Nn=1. Derive the optimal wlin in terms of (xn, yn) and express the
result without using matrix/vector notations. You can assume all denominators to be non-zero.
(Hint: This is linear regression in R without the added x0.)

4. (20 points) Consider the target function f(x) = ax2+b. Sample x uniformly from [0, 1], and use all
linear hypotheses h(x) = w0+w1 ·x to approximate the target function with respect to the squared
error. For any given (a, b), derive the weights (w∗

0 , w
∗
1) of the optimal hypothesis as a function of

(a, b).

5. (20 points) Consider running linear regression on {(xn, yn)}Nn=1, where xn includes the constant
dimension x0 = 1 as usual. For simplicity, you can assume that XTX is invertible. Assume that
the unique (why :-)) solution wlin is obtained after running linear regression on the data above.
Now, consider an output transformation

y′n = ayn + b.

for some given constants (a, b). Run linear regression on {(xn, y
′
n)}Nn=1 to obtain the unique solution

w′
lin. Derive w′

lin as a function of wlin and (a, b).

More on Linear Models

6. (20 points) Let E(w) : Rd → R be a function. Denote the gradient bE(w) and the Hessian AE(w)
by

bE(w) = ∇E(w) =


∂E
∂w1

(w)
∂E
∂w2

(w)
...

∂E
∂wd

(w)


d×1

and AE(w) =


∂2E
∂w2

1
(w) ∂2E

∂w1∂w2
(w) . . . ∂2E

∂w1∂wd
(w)

∂2E
∂w2∂w1

(w) ∂2E
∂w2

2
(w) . . . ∂2E

∂w2∂wd
(w)

...
...

. . .
...

∂2E
∂wd∂w1

(w) ∂2E
∂wd∂w2

(w) . . . ∂2E
∂w2

d
(w)


d×d

.

Then, the second-order Taylor’s expansion of E(w) around u is:

E(w) ≈ E(u) + bE(u)
T (w − u) +

1

2
(w − u)TAE(u)(w − u).

Suppose AE(u) is positive definite. The optimal direction v such that w ← u + v minimizes the
right-hand-side of the Taylor’s expansion above is simply −(AE(u))

−1bE(u).

Hint: Homework 0! :-)

An iterative optimization algorithm using the “optimal direction” above for updating w is called
Newton’s method, which can be viewed as “improving” gradient descent by using more infor-
mation about E. Now, consider minimizing Ein(w) in logistic regression problem with Newton’s
method on a data set {(xn, yn)}Nn=1 with the cross-entropy error function for Ein:

Ein(w) =
1

N

N∑
n=1

ln(1 + exp(−ynwTxn)).
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For any given wt, let

ht(x) =
1

1 + exp(wT
t x)

.

Express the Hessian AE(wt) with E = Ein as XTDX, where D is an N by N diagonal matrix.
Derive what D should be in terms of ht, wt, xn, and yn.

Note: The ht that we use here is slightly different from that being used in class—this particular ht

predicts P (−1|x) instead of P (+1|x). It was a harmless typo (sorry!!). By default, the TAs will
grade by this definition of ht. But if you really want to choose to use the in-class definition, you
are allowed to do so as long as you state your choice clearly for the TAs.

7. (20 points) The truncated squared loss

err(s, y) = (max(0, 1− ys))2

can be easily shown to be an upper bound on the 0/1 error. Assume that s is generated from
a linear scoring function s = wTx like Page 3/25 of Lecture 11. Derive a “perceptron learning
algorithm” by applying SGD on the truncated squared loss. Compare the resulting algorithm with
the original PLA. Discuss the similarities and differences using 5 to 10 sentences.

Multinomial Logistic Regression

8. In Lecture 11, we solve multiclass classification by OVA or OVO decompositions. One alternative to
deal with multiclass classification is to extend the original logistic regression model to Multinomial
Logistic Regression (MLR). For a K-class classification problem, we will denote the output space
Y = {1, 2, · · · ,K}. The hypotheses considered by MLR can be indexed by a matrix

W =

 | | · · · | · · · |
w1 w2 · · · wk · · · wK

| | · · · | · · · |


(d+1)×K

,

that contains weight vectors (w1, · · · ,wK), each of length d+1. The matrix represents a hypothesis

hy(x) =
exp(wT

y x)∑K
i=1 exp(w

T
i x)

that can be used to approximate the target distribution P (y|x) for any (x, y). MLR then seeks for
the maximum likelihood solution over all such hypotheses. For a given data set {(x1, y1), . . . , (xN , yN )}
generated i.i.d. from some P (x) and target distribution P (y|x), the likelihood of hy(x) is propor-

tional to
∏N

n=1 hyn
(xn). That is, minimizing the negative log likelihood is equivalent to minimizing

an Ein(W) that is composed of the following error function

err(W,x, y) = − lnhy(x) = −
K∑

k=1

Jy = kK lnhk(x).

Consider minimizing Ein(W) = 1
N

∑N
n=1 err(W,xn, yn) with gradient descent. Derive ∇Ein(W).

Your result should simply be a matrix with the same size as W. (Note: the hypothesis that
transforms the scores {wT

i x}Ki=1 to hy(x) is often called a softmax function in (multiclass) deep
learning.)

Experiments with Linear Models

Next, we will play with linear regression, logistic regression, and their use for binary classification. We
will also learn how their different robustness to outliers. We will generate artificial 2D data for training
and testing in the next problems. Each example (x, y) is assumed to be generated from the following
process:

• Flip a fair coin to get either y = +1 or y = −1.
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• If y = +1, generate x = (1, x1, x2) where (x1, x2) comes from a normal distribution of mean [3, 2]

and covariance

[
0.4 0
0 0.4

]
.

• If y = −1, generate x = (1, x1, x2) where (x1, x2) comes from a normal distribution of mean [5, 0]

and covariance

[
0.6 0
0 0.6

]
.

Please generate N = 256 examples from the process as your training data set D. Then, generate 4096
more examples from the process as your test data set (for evaluating Eout).

Hint: Be sure to check whether your normal distribution function needs you to provide the variance,
which would be like 0.4 for the yn = +1 cases, or the standard deviation, which would be like

√
0.4.

9. (20 points, *) Implement the linear regression algorithm taught in the lecture. Run the algorithm
for 128 times, each with a different random seed for generating the two data sets above. Plot
a histogram to visualize the distribution of Esqr

in (wlin), where Esqr
in denotes the averaged squared

error over N examples. What is the median Esqr
in over the 128 experiments?

10. (20 points, *) Following the previous problem, plot a histogram to visualize the distribution of

E
0/1
in (wlin), where E

0/1
in denotes the averaged 0/1 error over N examples (i.e. using wlin for binary

classification). What is the median E
0/1
in over the 128 experiments?

(Note: You can choose to run 128 new experiments in this problem, or just re-use the 128 hypotheses
wlin and test data sets obtained from the previous problem.)

11. (20 points, *) Consider two algorithms. The first one, A, is the linear regression algorithm above.
The second one B is logistic regression, trained with fixed learning rate gradient descent with η = 0.1
for T = 500 iterations, starting from w0 = 0. Run the algorithms on the same D, and record

[E
0/1
out (A(D)), E

0/1
out (B(D))]. Repeat the process for 128 times, each with a different random seed for

generating the training and test data sets above. Plot a scatter plot for [E
0/1
out (A(D)), E

0/1
out (B(D))].

What is the median of E
0/1
out (A(D)) and what is the median of E

0/1
out (B(D))?

12. (20 points, *) Following the previous problem, in addition to the 256 examples in D, add 16 outlier
examples generated from the following process to your training data (but not to your test data).
All outlier examples will be labeled y = +1 and x = [1, x1, x2] where (x1, x2) comes from a normal

distribution of mean [0, 6] and covariance

[
0.1 0
0 0.3

]
. Name the new training data set D′. Run

the algorithms on the same D′, and record [E
0/1
out (A(D′)), E

0/1
out (B(D′))]. Repeat the process for 128

times, each with a different random seed for generating the training and test data sets above. Plot

a scatter plot for [E
0/1
out (A(D′)), E

0/1
out (B(D′))]. What is the median of E

0/1
out (A(D′)) and what is the

median of E
0/1
out (B(D′))? Compare your results to the previous problem. Describe your findings.

Bonus: Logistic Regression and Linear Regression

13. (Bonus 20 points) When using Newton’s method for solving logistic regression, as discussed in
Problem 6, each update v is calculated by

v = −(XTDX)−1∇Ein(wt)

when (XTDX) is invertible. In linear regression, when XTX is invertible, the optimal

wlin = (XTX)−1XTy.

If we can express −∇Ein(wt) as some X̃T ỹ, and XTDX as some X̃T X̃, then each iteration of
Newton-solving logistic regression is performing an internal linear regression! State the internal
linear regression problem—in particular, what are X̃ and ỹ?
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