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Linear Support Vector Machine Course Introduction

Course History

NTU Version

e 15-17 weeks (2+ hours) o 8 weeks of ‘foundations’
e highly-praised with English (previous course) + 8 weeks

and blackboard teaching of ‘techniques’ (this course)
- e Mandarin teaching to reach
more audience in need

¢ slides teaching improved

with Coursera’s quiz and
homework mechanisms

goal: try making Coursera version
even better than NTU version J
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Linear Support Vector Machine Course Introduction

Course Design

from Foundations to Techniques

o mixture of philosophical illustrations, key theory, core algorithms,
usage in practice, and hopefully jokes
¢ three major techniques surrounding

e Embedding Numerous Features: how to and
numerous features?
—inspires (SVM) model

e Combining Predictive Features: how to and
predictive features?
—inspires (AdaBoost) model

e Distilling Implicit Features: how to and implicit
features?
—inspires model

allows students to J
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Linear Support Vector Machine Course Introduction

Fun Time

Which of the following description of this course is true?

© the course will be taught in Taiwanese

® the course will tell me the techniques that create the android
Lieutenant Commander Data in Star Trek

® the course will be 16 weeks long
@ the course will focus on three major techniques




Linear Support Vector Machine Course Introduction

Fun Time

Which of the following description of this course is true?

© the course will be taught in Taiwanese

® the course will tell me the techniques that create the android
Lieutenant Commander Data in Star Trek

® the course will be 16 weeks long
@ the course will focus on three major techniques

Reference Answer: @

© no, my Taiwanese is unfortunately not
good enough for teaching (yet)

® no, although what we teach may serve as
building blocks

@ no, unless you have also joined the
previous course

O yes, let’s get started!

v
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Linear Support Vector Machine Course Introduction

Roadmap

© Embedding Numerous Features: Kernel Models

Lecture 1: Linear Support Vector Machine

e Course Introduction

e Large-Margin Separating Hyperplane

e Standard Large-Margin Problem

e Support Vector Machine

e Reasons behind Large-Margin Hyperplane

o0
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Linear Support Vector Machine Large-Margin Separating Hyperplane

Linear Classification Revisited

PLA/pocket .
o
o
h(x) = sign(s) o
X0 & ©
(o]
X1 s x
X h(x)
(linear separable)
Xd
plausible err = 0/1
(small flipping noise)
minimize specially
linear (hyperplane) classifiers:
h(x) = sign(w'x) J
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Linear Support Vector Machine Large-Margin Separating Hyperplane

Which Line Is Best?

PLA? depending on randomness
VC bound? whichever you like!
Eout(w) < Ein(w) + Q(%)
N——

N
0 dyc=d-+1

You? rightmost one, possibly :-)

J
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Linear Support Vector Machine Large-Margin Separating Hyperplane

Why Rightmost Hyperplane?

informal argument

if (Gaussian-like) noise on future x ~ x,:

X, further from hyperplane distance to closest x,,
<= tolerate more noise <= amount of noise tolerance
<= more robust to overfitting <= robustness of hyperplane

rightmost one: more robust
because of larger distance to closest x, J
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Linear Support Vector Machine Large-Margin Separating Hyperplane

Fat Hyperplane

x x x

x o o x o o x o o
x x x

x o o * o [o] x o o

e robust separating hyperplane: fat
—far from both sides of examples

e robustness = fatness: distance to closest x,,

goal: find fattest separating hyperplane ]
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Linear Support Vector Machine Large-Margin Separating Hyperplane

Large-Margin Separating Hyperplane

max fatness(w)

subjectto  w classifies every (X,, yn) correctly
fatness(w) = r?in Ndistance(xn,w)
n=1,...,

e fatness: formally called margin
e correctness: y, = sign(w’x,)

goal: find largest-margin
separating hyperplane J
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Linear Support Vector Machine Large-Margin Separating Hyperplane

Large-Margin Separating Hyperplane

max margin(w)

subjectto  every y,w'x, >0
margin(w) = r?in Ndistance(x,,,w)
n=i,...,

e fatness: formally called margin
e correctness: y, = sign(w’x,)

goal: find largest-margin
separating hyperplane J
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Linear Support Vector Machine Large-Margin Separating Hyperplane

Fun Time

Consider two examples (v, +1) and (—v, —1) where v € R? (without

padding the vy = 1). Which of the following hyperplane is the
separating one for the two examples? You are highly

encouraged to visualize by considering, for instance, v = (3, 2).

ﬂX1:0
O x=0
O vixy+vxo=0
O voxy +Vvixo=0




Linear Support Vector Machine Large-Margin Separating Hyperplane

Fun Time

Consider two examples (v, +1) and (—v, —1) where v € R? (without
padding the vy = 1). Which of the following hyperplane is the
separating one for the two examples? You are highly

encouraged to visualize by considering, for instance, v = (3, 2).
O x=0
O x=0
O vixy+vxo=0
O voxy +Vvixo=0

Reference Answer: @

Here the separating hyperplane
(line) must be a perpendicular bisector of the
line segment between v and —v. Hence v is a
normal vector of the largest-margin line. The
result can be extended to the more general

case of v € RY.
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Linear Support Vector Machine Standard Large-Margin Problem

Distance to Hyperplane: Preliminary

max margin(w)
w

subjectto  every y,w'x, >0

‘shorten’ x and w

distance needs wy and (wy, . .., wy) differently (to be derived)
b = w Xo=1_
| Wi - | X
J
w = : X =
| Wq | Xd
for this part: h(x) = sign(w’x + b) |
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Linear Support Vector Machine Standard Large-Margin Problem

Distance to Hyperplane

want: distance(x, b, w), with hyperplane w’x' +b =0 J

consider x’, x” on hyperplane
Owx=—bwx"=—-b

® w L hyperplane:

WT (X” o X/) -0
———

vector on hyperplane

© distance = project (x — x’) to L hyperplane

M 1

= __|w'x+ b

[Iw]]

T

M(X - x')

distance(x, b,w) = ‘ w
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Linear Support Vector Machine Standard Large-Margin Problem

Distance to Separating Hyperplane

distance(x, b,w) = ‘ —|wTx + b|

e separating hyperplane: for every n
}/n(WTxn +b)>0

 distance to separating hyperplane:

distance(x,,, b,w) = — (W' x,, + b)

1
[[w]]

max  margin(b, w)
b,w

subjectto  every y,(w'x, + b) >0
margin(b,w) = min H17||y”(WTX” + b)
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Linear Support Vector Machine Standard Large-Margin Problem

Margin of Special Separating Hyperplane
max  margin(b, w)
b,w
subjectto  every y,(w'x, + b) >0
margin(b, w) = m|n IIWHy,,(w Xn + b)

e w/x+ b= 0same as 3w’x + 3b = 0: scaling does not matter
e special scaling: only consider separating (b, w) such that

m|n yn(w X, +b) — 1 = margin(b,w) = ”17”

1
max T
nax  wl

subjectto  every y,(W'x, + b) > 0
r?in N Yn(WTx, + b) =
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Linear Support Vector Machine Standard Large-Margin Problem

Standard Large-Margin Hyperplane Problem

1
max —— subject to mln yn(wan + b) =
b,w ||W|| =T ecos

necessary constraints: y,(w’x, 4+ b) > 1 forall n

original constraint: min, ¢ yn(wa,, +b)=1
want: optimal (b, w) here (inside)

if optimal (b, w) outside, e.g. yn(W'x, + b) > 1.126 for all n
—can scale (b, w) to “more optimal” (1 55> Tig) (contradiction!)

, _ _ ]
final change: max = min, remove \/ , add 5

min i
b,w

subjectto  y,(W'x,+b)>1foralln

w'w

N —
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Linear Support Vector Machine Standard Large-Margin Problem

Fun Time

Consider three examples (X1, +1), (X2, +1), (X3, —1), where
X1 = (3,0), xo = (0,4), x3 = (0,0). In addition, consider a hyperplane
X1 + X2 = 1. Which of the following is not true?

© the hyperplane is a separating one for the three examples

® the distance from the hyperplane to x4 is 2

© the distance from the hyperplane to x3 is %

@ the example that is closest to the hyperplane is x3




Linear Support Vector Machine Standard Large-Margin Problem

Fun Time

Consider three examples (X1, +1), (X2, +1), (X3, —1), where
X1 = (3,0), xo = (0,4), x3 = (0,0). In addition, consider a hyperplane
X1 + X2 = 1. Which of the following is not true?

© the hyperplane is a separating one for the three examples

® the distance from the hyperplane to x4 is 2

© the distance from the hyperplane to x3 is %

@ the example that is closest to the hyperplane is x3

Reference Answer: @

The distance from the hyperplane to x4 is

H(B+0-1)=v2
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Linear Support Vector Machine Support Vector Machine

Solving a Particular Standard Problem

min W
b,w

subjectto  y,(W'x,+b) > 1foralln

x o o
0 0 —1 —-b>1 (i)
x_ |22 y— —1 —2wy — 2w — b > 1 (i)
2 0 +1 2w; +b>1 (iii)
30 +1 3wy +hH>1 (iv)
L) & (i) = wy > 41 1T
{(ii) & (i) = wy<—1f W W]
o (wy =1, wo =—1,b=—1) at lower bound and satisfies (/) — (iv)

Osvm(X) = sign(xy — xo — 1): SVM? :-) J
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Linear Support Vector Machine Support Vector Machine

Support Vector Machine (SVM)

optimal solution: (wy =1, wo = —-1,b=—1)

margin(b, w) = ”1_” = \L@

e examples on boundary: ‘locates’ fattest hyperplane
other examples: not needed

¢ call boundary example support vector (candidate)

support vector machine (SVM):
learn fattest hyperplanes
(with help of support vectors )
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Linear Support Vector Machine Support Vector Machine

Solving General SVM

min  tw'w
b,w

subjectto  y,(w'x,+b) > 1foralln

¢ not easy manually, of course :-)
e gradient descent? not easy with constraints
e luckily:

e (convex) quadratic objective function of (b, w)
e linear constraints of (b, w)

—quadratic programming

quadratic programming (QP):
‘easy’ optimization problem

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 19/28



Linear Support Vector Machine Support Vector Machine

Quadratic Programming

optimal (b,w) = ? optimal u <~ QP(Q, p,A,c)
: 1T : 1,,T T
rpw sW'W mum sU'Qu+pu
subjectto  y,(W'x,+b)>1,| subjectto alu>cpy,
forn=1,2,...,N form=1,2,....M
L . [bl.~, [0 O 7
objective function: u= { w ] Q= [ 0, Iy }p = 0g.1
constraints:  a) =y,[1 xI Jicho=1,M=N
SVM with general QP solver:
eagsy if you’ve read the manual :-) J
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Linear Support Vector Machine Support Vector Machine

SVM with QP Solver

Linear Hard-Margin SVM Algorithm

0 0
QQ= [d g]p Ocii;af =Ya[ 1 X} Jicn=1

o .| -arrae

® return b & w as gsvu

¢ hard-margin: nothing violate ‘fat boundary’

e linear: x, )
want non-linear?
z, = ®(x,)—remember? :-)
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Linear Support Vector Machine Support Vector Machine

Fun Time

Consider two negative examples with x; = (0,0) and xo = (2, 2); two
positive examples with x3 = (2,0) and x4 = (3, 0), as shown on page
17 of the slides. Define u, Q, p, ¢, as those listed on page 20 of the
slides. What are a] that need to be fed into the QP solver?

@ a =[-1,00 ,al=[-1,22 ,a]=[-1,2,0] ,a] =[-1,3,0]
® a/ =[1,0,0] ,al =[1,-2,-2] ,al =[-1,2,0] ,al =[-1,3,0]
® a] =[1,0,0] ,a] =[1,2,2] ,al =[1,2,0] ,a] =[1,3,0]
@ a] =[-1,0,0] ,a] =[-1,-2,-2] ,a] =[1,2,0] ,a] =[1,3,0]




Linear Support Vector Machine Support Vector Machine

Fun Time

Consider two negative examples with x; = (0,0) and xo = (2, 2); two
positive examples with x3 = (2,0) and x4 = (3, 0), as shown on page
17 of the slides. Define u, Q, p, ¢, as those listed on page 20 of the
slides. What are a] that need to be fed into the QP solver?

@ a =[-1,00 ,al=[-1,22 ,a]=[-1,2,0] ,a] =[-1,3,0]
® a/ =[1,0,0] ,al=[1,-2,-2] ,al =[-1,2,0] ,al =[-1,3,0]
® a] =[1,0,0] ,al =1[1,2,2] ,al =[1,2,0] ,a; =[1,3,0]
@ a] =[-1,0,0] ,al =[-1,-2,-2] ,a] =[1,2,0] ,a; =[1,3,0]

We needa] = y, [ 1
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Linear Support Vector Machine Reasons behind Large-Margin Hyperplane

Why Large-Margin Hyperplane?

T

min  tw’w
b,w
subjectto  y,(w'z,+b) > 1forall n ) o
minimize constraint
regularization E; w'w<C
SVM w'w | E, =0 [and more]
SVM (large-margin hyperplane):

‘weight-decay regularization’ within E;, = OJ
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Linear Support Vector Machine Reasons behind Large-Margin Hyperplane

Large-Margin Restricts Dichotomies

consider ‘large-margin algorithm’ A,,:
either returns g with margin(g) > p (if exists), or 0 otherwise

Ap: like PLA = shatter ‘general’ 3 inputs

o o x x
[} [} o o
o x o x

A1 126: more strict than SVM = cannot shatter any 3 inputs

N

fewer dichotomies = smaller ‘VC dim. = better generalization )

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 24/28



Linear Support Vector Machine Reasons behind Large-Margin Hyperplane

VC Dimension of Large-Margin Algorithm

fewer dichotomies — smaller ‘VC dim.
considers d,c(.A,) [data-dependent, need more than VC]
instead of dy(#) [data-independent, covered by VC]

dvc(A,) when X = unit circle in R?

e p = 0: just perceptrons (dyc = 3)

o p> ‘f : cannot shatter any 3 inputs

(dve < 3)
—some inputs must be of distance < /3

generally, when X in radius-R hyperball:

. (R?
dvc(Ap) < min (p—g,d) +1 < d-‘r1

dvc(perceptrons)
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Linear Support Vector Machine Reasons behind Large-Margin Hyperplane

Benefits of Large-Margin Hyperplanes

large-margin
hyperplanes | hyperplanes hyperplanes
+ feature transform @
# even fewer many
boundary simple simple sophisticated
° good, for dyc and generalization

¢ sophisticated good, for possibly better Ej,

a new possibility: non-linear SVM

large-margin
hyperplanes
+ humerous feature transform ¢
i
boundary sophisticated
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Linear Support Vector Machine Reasons behind Large-Margin Hyperplane

Fun Time

Consider running the ‘large-margin algorithm’ A, with p = % ona
Z-space such that z = ®(x) is of 1126 dimensions (excluding zy) and
|z|| < 1. What is the upper bound of dyc(.A,) when calculated by

min(’j—f,d>+1?
05

Q17

© 1126

o 1127




Linear Support Vector Machine Reasons behind Large-Margin Hyperplane

Fun Time

Consider running the ‘large-margin algorithm’ A, with p = % ona
Z-space such that z = ®(x) is of 1126 dimensions (excluding zy) and
|z|| < 1. What is the upper bound of dyc(.A,) when calculated by

min(’j—f,d>+1?
05

Q17

© 1126

o 1127

Reference Answer: @

By the description, d = 1126 and R = 1. So
the upper bound is simply 17.
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Linear Support Vector Machine Reasons behind Large-Margin Hyperplane

Summary
© Embedding Numerous Features: Kernel Models

Lecture 1: Linear Support Vector Machine

@ Course Introduction
from foundations to techniques
e Large-Margin Separating Hyperplane
intuitively more robust against noise
e Standard Large-Margin Problem
minimize ‘length of w’ at special separating scale
@ Support Vector Machine
‘easy’ via quadratic programming
@ Reasons behind Large-Margin Hyperplane
fewer dichotomies and better generalizationl

¢ next: solving non-linear Support Vector Machine

® Combining Predictive Features: Aggregation Models
@ Distilling Implicit Features: Extraction Models

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 28/28



	Linear Support Vector Machine
	Course Introduction
	Large-Margin Separating Hyperplane
	Standard Large-Margin Problem
	Support Vector Machine
	Reasons behind Large-Margin Hyperplane


