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Linear Support Vector Machine Course Introduction

Course History

NTU Version
• 15-17 weeks (2+ hours)
• highly-praised with English

and blackboard teaching

Coursera Version
• 8 weeks of ‘foundations’

(previous course) + 8 weeks
of ‘techniques’ (this course)

• Mandarin teaching to reach
more audience in need

• slides teaching improved
with Coursera’s quiz and
homework mechanisms

goal: try making Coursera version
even better than NTU version
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Linear Support Vector Machine Course Introduction

Course Design

from Foundations to Techniques
• mixture of philosophical illustrations, key theory, core algorithms,

usage in practice, and hopefully jokes :-)
• three major techniques surrounding feature transforms:

• Embedding Numerous Features: how to exploit and regularize
numerous features?
—inspires Support Vector Machine (SVM) model

• Combining Predictive Features: how to construct and blend
predictive features?
—inspires Adaptive Boosting (AdaBoost) model

• Distilling Implicit Features: how to identify and learn implicit
features?
—inspires Deep Learning model

allows students to use ML professionally
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Linear Support Vector Machine Course Introduction

Fun Time
Which of the following description of this course is true?

1 the course will be taught in Taiwanese
2 the course will tell me the techniques that create the android

Lieutenant Commander Data in Star Trek
3 the course will be 16 weeks long
4 the course will focus on three major techniques

Reference Answer: 4

1 no, my Taiwanese is unfortunately not
good enough for teaching (yet)

2 no, although what we teach may serve as
building blocks

3 no, unless you have also joined the
previous course

4 yes, let’s get started!
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Linear Support Vector Machine Course Introduction

Roadmap

1 Embedding Numerous Features: Kernel Models

Lecture 1: Linear Support Vector Machine
Course Introduction
Large-Margin Separating Hyperplane
Standard Large-Margin Problem
Support Vector Machine
Reasons behind Large-Margin Hyperplane

2 Combining Predictive Features: Aggregation Models
3 Distilling Implicit Features: Extraction Models
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Linear Support Vector Machine Large-Margin Separating Hyperplane

Linear Classification Revisited

PLA/pocket

h(x) = sign(s)

s
x

x

x

x0

1

2

d

h x(   )

plausible err = 0/1
(small flipping noise)
minimize specially

(linear separable)

linear (hyperplane) classifiers:
h(x) = sign(wT x)
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Linear Support Vector Machine Large-Margin Separating Hyperplane

Which Line Is Best?

• PLA? depending on randomness
• VC bound? whichever you like!

Eout(w) ≤ Ein(w)︸ ︷︷ ︸
0

+ Ω(H)︸ ︷︷ ︸
dVC=d+1

You? rightmost one, possibly :-)
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Linear Support Vector Machine Large-Margin Separating Hyperplane

Why Rightmost Hyperplane?

informal argument
if (Gaussian-like) noise on future x ≈ xn:

⇐⇒

xn further from hyperplane
⇐⇒ tolerate more noise
⇐⇒ more robust to overfitting

⇐⇒

distance to closest xn
⇐⇒ amount of noise tolerance
⇐⇒ robustness of hyperplane

rightmost one: more robust
because of larger distance to closest xn
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Linear Support Vector Machine Large-Margin Separating Hyperplane

Fat Hyperplane

• robust separating hyperplane: fat
—far from both sides of examples

• robustness ≡ fatness: distance to closest xn

goal: find fattest separating hyperplane
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Linear Support Vector Machine Large-Margin Separating Hyperplane

Large-Margin Separating Hyperplane

max
w

fatness(w)

subject to w classifies every (xn, yn) correctly
fatness(w) = min

n=1,...,N
distance(xn,w)

max
w

margin(w)

subject to every ynwT xn > 0
margin(w) = min

n=1,...,N
distance(xn,w)

• fatness: formally called margin
• correctness: yn = sign(wT xn)

goal: find largest-margin
separating hyperplane
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Linear Support Vector Machine Large-Margin Separating Hyperplane

Fun Time
Consider two examples (v,+1) and (−v,−1) where v ∈ R2 (without
padding the v0 = 1). Which of the following hyperplane is the
largest-margin separating one for the two examples? You are highly
encouraged to visualize by considering, for instance, v = (3,2).

1 x1 = 0
2 x2 = 0
3 v1x1 + v2x2 = 0
4 v2x1 + v1x2 = 0

Reference Answer: 3

Here the largest-margin separating hyperplane
(line) must be a perpendicular bisector of the
line segment between v and −v. Hence v is a
normal vector of the largest-margin line. The
result can be extended to the more general
case of v ∈ Rd .
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Linear Support Vector Machine Standard Large-Margin Problem

Distance to Hyperplane: Preliminary

max
w

margin(w)

subject to every ynwT xn > 0
margin(w) = min

n=1,...,N
distance(xn,w)

‘shorten’ x and w
distance needs w0 and (w1, . . . ,wd ) differently (to be derived)

b = w0 |w
|

 =

 w1
...

wd

 ;
���

�XXXXx0 = 1 |x
|

 =

 x1
...

xd



for this part: h(x) = sign(wT x + b)
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Linear Support Vector Machine Standard Large-Margin Problem

Distance to Hyperplane
want: distance(x,b,w), with hyperplane wT x′ + b = 0

consider x′, x′′ on hyperplane
1 wT x′ = − b, wT x′′ = − b
2 w ⊥ hyperplane:wT (x′′ − x′)︸ ︷︷ ︸

vector on hyperplane

 = 0

3 distance = project (x− x′) to ⊥ hyperplane

dist(x, h)

x′
x′′

w

x

distance(x,b,w) =

∣∣∣∣ wT

‖w‖(x− x′)
∣∣∣∣ 1

=
1
‖w‖|w

T x + b|
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Linear Support Vector Machine Standard Large-Margin Problem

Distance to Separating Hyperplane

distance(x,b,w) =
1
‖w‖|w

T x + b|

• separating hyperplane: for every n

yn(wT xn + b) > 0

• distance to separating hyperplane:

distance(xn,b,w) =
1
‖w‖yn(wT xn + b)

max
b,w

margin(b,w)

subject to every yn(wT xn + b) > 0
margin(b,w) = min

n=1,...,N
1
‖w‖yn(wT xn + b)
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Linear Support Vector Machine Standard Large-Margin Problem

Margin of Special Separating Hyperplane

max
b,w

margin(b,w)

subject to every yn(wT xn + b) > 0
margin(b,w) = min

n=1,...,N
1
‖w‖yn(wT xn + b)

• wT x + b = 0 same as 3wT x + 3b = 0: scaling does not matter
• special scaling: only consider separating (b,w) such that

min
n=1,...,N

yn(wT xn + b) = 1 =⇒ margin(b,w) = 1
‖w‖

max
b,w

1
‖w‖

subject to every yn(wT xn + b) > 0
min

n=1,...,N
yn(wT xn + b) = 1
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Linear Support Vector Machine Standard Large-Margin Problem

Standard Large-Margin Hyperplane Problem

max
b,w

1
‖w‖ subject to min

n=1,...,N
yn(wT xn + b) = 1

necessary constraints: yn(wT xn + b) ≥ 1 for all n

original constraint: minn=1,...,N yn(wT xn + b) = 1
want: optimal (b,w) here (inside)

if optimal (b,w) outside, e.g. yn(wT xn + b) > 1.126 for all n
—can scale (b,w) to “more optimal” ( b

1.126 ,
w

1.126) (contradiction!)

final change: max =⇒ min, remove
√

w

, add 1
2

min
b,w

1
2wT w

subject to yn(wT xn + b) ≥ 1 for all n
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Linear Support Vector Machine Standard Large-Margin Problem

Fun Time

Consider three examples (x1,+1), (x2,+1), (x3,−1), where
x1 = (3,0), x2 = (0,4), x3 = (0,0). In addition, consider a hyperplane
x1 + x2 = 1. Which of the following is not true?

1 the hyperplane is a separating one for the three examples
2 the distance from the hyperplane to x1 is 2
3 the distance from the hyperplane to x3 is 1√

2

4 the example that is closest to the hyperplane is x3

Reference Answer: 2

The distance from the hyperplane to x1 is
1√
2

(3 + 0− 1) =
√

2.
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Linear Support Vector Machine Support Vector Machine

Solving a Particular Standard Problem

min
b,w

1
2wT w

subject to yn(wT xn + b) ≥ 1 for all n

X =


0 0
2 2
2 0
3 0

 y =


−1
−1
+1
+1


− b ≥ 1 (i)

−2w1 − 2w2 − b ≥ 1 (ii)
2w1

+ 0w2

+ b ≥ 1 (iii)
3w1

+ 0w2

+ b ≥ 1 (iv)

•
{

(i) & (iii) =⇒ w1 ≥ +1
(ii) & (iii) =⇒ w2 ≤ −1

}
=⇒ 1

2wT w ≥ 1

• (w1 = 1,w2 = −1,b = −1) at lower bound and satisfies (i)− (iv)

gSVM(x) = sign(x1 − x2 − 1): SVM? :-)
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Linear Support Vector Machine Support Vector Machine

Support Vector Machine (SVM)

optimal solution: (w1 = 1,w2 = −1,b = −1)

margin(b,w) = 1
‖w‖ = 1√

2
x 1
− x

2
− 1

=
0

0.707

• examples on boundary: ‘locates’ fattest hyperplane
other examples: not needed

• call boundary example support vector (candidate)

support vector machine (SVM):
learn fattest hyperplanes

(with help of support vectors )
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Linear Support Vector Machine Support Vector Machine

Solving General SVM

min
b,w

1
2wT w

subject to yn(wT xn + b) ≥ 1 for all n

• not easy manually, of course :-)
• gradient descent? not easy with constraints
• luckily:

• (convex) quadratic objective function of (b,w)
• linear constraints of (b,w)

—quadratic programming

quadratic programming (QP):
‘easy’ optimization problem
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Linear Support Vector Machine Support Vector Machine

Quadratic Programming

optimal (b,w) = ?

min
b,w

1
2wT w

subject to yn(wT xn + b) ≥ 1,
for n = 1,2, . . . ,N

optimal u← QP(Q,p,A,c)

min
u

1
2uT Qu + pT u

subject to aT
mu ≥ cm,

for m = 1,2, . . . ,M

objective function: u =

[
b
w

]
; Q =

[
0 0T

d
0d Id

]
; p = 0d+1

constraints: aT
n = yn

[
1 xT

n
]
; cn = 1; M = N

SVM with general QP solver:
easy if you’ve read the manual :-)

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 20/28



Linear Support Vector Machine Support Vector Machine

SVM with QP Solver

Linear Hard-Margin SVM Algorithm

1 Q =

[
0 0T

d
0d Id

]
; p = 0d+1; aT

n = yn
[

1 xT
n
]
; cn = 1

2

[
b
w

]
← QP(Q,p,A,c)

3 return b & w as gSVM

• hard-margin: nothing violate ‘fat boundary’
• linear: xn

want non-linear?
zn = Φ(xn)—remember? :-)
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Linear Support Vector Machine Support Vector Machine

Fun Time

Consider two negative examples with x1 = (0,0) and x2 = (2,2); two
positive examples with x3 = (2,0) and x4 = (3,0), as shown on page
17 of the slides. Define u, Q, p, cn as those listed on page 20 of the
slides. What are aT

n that need to be fed into the QP solver?
1 aT

1 = [−1, 0, 0] , aT
2 = [−1, 2, 2] , aT

3 = [−1, 2, 0] , aT
4 = [−1, 3, 0]

2 aT
1 = [1, 0, 0] , aT

2 = [1,−2,−2] , aT
3 = [−1, 2, 0] , aT

4 = [−1, 3, 0]

3 aT
1 = [1, 0, 0] , aT

2 = [1, 2, 2] , aT
3 = [1, 2, 0] , aT

4 = [1, 3, 0]

4 aT
1 = [−1, 0, 0] , aT

2 = [−1,−2,−2] , aT
3 = [1, 2, 0] , aT

4 = [1, 3, 0]

Reference Answer: 4

We need aT
n = yn

[
1 xT

n
]
.
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Linear Support Vector Machine Support Vector Machine
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Linear Support Vector Machine Reasons behind Large-Margin Hyperplane

Why Large-Margin Hyperplane?

min
b,w

1
2wT w

subject to yn(wT zn + b) ≥ 1 for all n

minimize constraint
regularization Ein wT w ≤ C

SVM wT w Ein = 0 [and more]

SVM (large-margin hyperplane):
‘weight-decay regularization’ within Ein = 0
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Linear Support Vector Machine Reasons behind Large-Margin Hyperplane

Large-Margin Restricts Dichotomies
consider ‘large-margin algorithm’ Aρ:

either returns g with margin(g) ≥ ρ (if exists), or 0 otherwise

A0: like PLA =⇒ shatter ‘general’ 3 inputs

A1.126: more strict than SVM =⇒ cannot shatter any 3 inputs

ρ

fewer dichotomies =⇒ smaller ‘VC dim.’ =⇒ better generalization
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Linear Support Vector Machine Reasons behind Large-Margin Hyperplane

VC Dimension of Large-Margin Algorithm
fewer dichotomies =⇒ smaller ‘VC dim.’

considers dVC(Aρ) [data-dependent, need more than VC]

—

instead of dVC(H) [data-independent, covered by VC]

dVC(Aρ) when X = unit circle in R2

• ρ = 0: just perceptrons (dVC = 3)

• ρ >
√

3
2 : cannot shatter any 3 inputs

(dVC < 3)
—some inputs must be of distance ≤

√
3

generally, when X in radius-R hyperball:

dVC(Aρ) ≤ min
(

R2

ρ2 ,d
)

+ 1 ≤ d + 1︸ ︷︷ ︸
dVC(perceptrons)
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Linear Support Vector Machine Reasons behind Large-Margin Hyperplane

Benefits of Large-Margin Hyperplanes

large-margin
hyperplanes hyperplanes hyperplanes

+ feature transform Φ
# even fewer not many many

boundary simple simple sophisticated

• not many good, for dVC and generalization
• sophisticated good, for possibly better Ein

a new possibility: non-linear SVM

large-margin
hyperplanes

+ numerous feature transform Φ
# not many

boundary sophisticated
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Linear Support Vector Machine Reasons behind Large-Margin Hyperplane

Fun Time

Consider running the ‘large-margin algorithm’ Aρ with ρ = 1
4 on a

Z-space such that z = Φ(x) is of 1126 dimensions (excluding z0) and
‖z‖ ≤ 1. What is the upper bound of dVC(Aρ) when calculated by
min

(
R2

ρ2 ,d
)

+ 1?

1 5
2 17
3 1126
4 1127

Reference Answer: 2

By the description, d = 1126 and R = 1. So
the upper bound is simply 17.
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Linear Support Vector Machine Reasons behind Large-Margin Hyperplane

Summary
1 Embedding Numerous Features: Kernel Models

Lecture 1: Linear Support Vector Machine
Course Introduction

from foundations to techniques
Large-Margin Separating Hyperplane

intuitively more robust against noise
Standard Large-Margin Problem

minimize ‘length of w’ at special separating scale
Support Vector Machine

‘easy’ via quadratic programming
Reasons behind Large-Margin Hyperplane
fewer dichotomies and better generalization

• next: solving non-linear Support Vector Machine

2 Combining Predictive Features: Aggregation Models
3 Distilling Implicit Features: Extraction Models
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