

Lecture 2: The Learning Problems, Extended

Hsuan-Tien Lin (林軒田) htlin@csie.ntu.edu.tw

Department of Computer Science & Information Engineering

National Taiwan University (國立台灣大學資訊工程系)

Multiclass Classification: Which Fruit?

(image by Robert-Owen-Wahl from Pixabay)

Multilabel Classification: Which Fruits?

?: {apple, orange, kiwi}

(image by Michal Jarmoluk from Pixabay)

classify input to multiple (or no) categories $V = 2^{apple, orange, strawberry, kiwi}$

 ?: {machine learning, data structure, data mining, object oriented programming, artificial intelligence, compiler, architecture, chemistry, textbook, children book, ... etc. }

another **multilabel** classification problem: tagging input to multiple categories

The Learning Problems, Extended Binary Relevance: Multilabel Classification via Yes/No

- Binary Relevance (BR): reduction (transformation) to multiple isolated binary classification
- disadvantages (addressed by more sophisticated models):
 - isolation—hidden relations not exploited (e.g. ML and DM highly correlated, ML subset of AI, textbook & children book disjoint)
 - imbalanced—few yes, many no

BR for multilabel classification:

uses binary classification as a core tool

Hsuan-Tien Lin (NTU CSIE)

Sophisticated Output: Image Generation Problems

Style Transfer

(Leonardo da Vinci, in Public Domain)

(Van Gogh,

in Public Domain)

(Pjfinlay, with CC0)

all images are downloaded from Wikipedia

Other Image Generation Problems

- noisy image \Rightarrow clean image
- low-resolution image \Rightarrow high-resolution image

\mathcal{Y} : a 'manifold' $\subset \mathbb{R}^{w \times h \times c}$,

arguably not just multi-pixel regression

Hsuan-Tien Lin (NTU CSIE)

Learning with Different Output Space ${\mathcal Y}$

Self-supervised: Unsupervised + Self-defined Goal(s) jigsaw puzzle: pieces \rightarrow full picture

(Figure 1 of Noroozi and Favaro,

Unsupervised Learning of Visual Representations by Solving Jigsaw Puzzles. ECCV 2016)

Other Popular Goals

- colorization: grayscale image \rightarrow colored image
- center word prediction: chunk of text \rightarrow center word
- next sentence prediction: sentence A → is sentence B next?

self-supervised learning: recipe to learn 'physical knowledge' before actual task

Hsuan-Tien Lin (NTU CSIE)

Weakly-supervised: Learning without True y_n

complementary label: \bar{y}_n ('not' label) instead of y_n

Other Weak Supervisions

- partial label: a set Y_n that contains true y_n
- noisy label: y'_n, a noisy version of true y_n
- proportion label: aggregated statistics of a set of y_n

weakly-supervised learning: another realistic (?) family to reduce labeling burden

Hsuan-Tien Lin (NTU CSIE)

THE Most Well-known Reinforcement Learning Agent

(Public Domain, from Wikipedia; used here for education purpose; all other rights still belong to Google DeepMind)

Non-ML Techniques

Monte C. Tree Search \approx move simulation in brain

(CC-BY-SA 3.0 by Stannered on Wikipedia)

ML Techniques

Deep Learning \approx board analysis in human brain

$\begin{array}{l} \mbox{Reinforcement Learn.} \\ \approx \mbox{(self)-practice in} \\ \mbox{human training} \end{array}$

(CC-BY-SA 2.0 by Frej Bjon on Wikipedia)

(Public Domain, from Wikipedia)

good AI: important to use the right techniques—ML & others, including human

The LATEST Well-known RL Agent

(Public Domain, from Wikipedia; used here for education purpose; all other rights still belong to OpenAI)

GPT-3

Self-Supervised

- mainly next-token prediction from 2048 tokens
- 175 billion parameters trained with 500 billion tokens

chatGPT

staged-ML important for building huge ML systems

Hsuan-Tien Lin (NTU CSIE)

Learning with Different Data Label y_n

Hsuan-Tien Lin (NTU CSIE)

Online + Batch for Real-World Applications

model re-trained with historical daily batch data, incrementally or completely

purely online

- incremental update costly online
- delayed labels hard to handle properly

purely batch

- cannot capture drifts/trends well
- complete re-training possibly costly

real-world ML system different from textbook settings

Hsuan-Tien Lin (NTU CSIE)

Making Active Learning More Realistic

🖟 ntucllab / libact						() Watch	59	★ Star	533	¥ Fork	144
↔ Code	() Issues 3	6) Pull requests	3 III Projects 0	I) Security	dt Insights						
Pool-based	d active learn ming-library	ing in Python http active-learning	://libact.readthedocs.	org/							
⑦ 700 commits		₽ 6 branches	🗇 0 package	s (⊙ 9 releases	11 contributors		utors	ф BSD-2-Clause		
P								P P.			

- including many popular strategies
- received > 500 stars and continuous issues

"libact is a Python package designed to make active learning easier for real-world users"

Learning with Different Protocol $f \Rightarrow (\mathbf{x}_n, y_n)$

Hsuan-Tien Lin (NTU CSIE)

Deep Learning: 'Automatic' Conversion from Raw to Concrete

- layered extraction: simple to complex features
- natural for difficult learning task with raw features, like vision

deep learning: currently popular in vision/speech/...