
Machine Learning Foundations

(機器學習基石)

Lecture 1: The Learning Problem, Extended

Hsuan-Tien Lin (林軒田)

htlin@csie.ntu.edu.tw

Department of Computer Science & Information Engineering

National Taiwan University (國立台灣大學資訊工程系)

ML-driven Applications: Medicine

By DataBase Center for Life Science; licensed under CC BY 4.0 via Wikimedia Commons

for computer-assisted diagnosis

- data:
 - patient status
 - past diagnosis from doctors
- skill: dialogue system that efficiently identifies disease of patient

my student's earlier work as intern @ HTC DeepQ

ML-driven Applications: Communication

By JulianVilla26;

licensed under CC BY-SA 4.0 via Wikimedia Commons

for 4G LTE communication

- data:
 - channel information (the channel matrix representing mutual information)
 - configuration (precoding, modulation, etc.) that reaches the highest throughput
- skill: predict best configuration to the base station in a new environment

my student's earlier work as intern @ MTK

ML-driven Applications: Manufacturing

By Raimond Spekking;

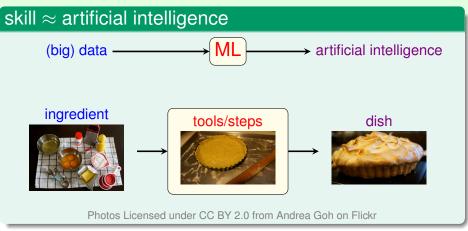
licensed under CC BY-SA 4.0 via Wikimedia Commons

for PCB fault detection

- data: PCB images of normal and abnormal PCBs
 & maybe human-marked faulty locations
- skill: predict which PCBs are faulty

ongoing research for smart factory

ML-driven Applications: Security


original picture by F.U.S.I.A. assistant and derivative work by Sylenius via Wikimedia Commons

face recognition

- data faces and non-faces
- skill: predict which boxes contain faces

mature ML technique, but often need tuning for different needs

Machine Learning Connects (Big) Data and Al

ML not the only tools, but a popular family of tools

Bigger Data Enable Easier-to-use Al

By deepanker70 on https://pixabay.com/

past

best route by shortest path

present

best route by current traffic

future

best route by predicted travel time

big data can make machine look smarter

Good AI Needs Both ML and Non-ML Techniques

(Public Domain, from Wikipedia; used here for education purpose; all other rights still belong to Google DeepMind)

Non-ML Techniques

Monte C. Tree Search \approx move simulation in brain

(CC-BY-SA 3.0 by Stannered on Wikipedia)

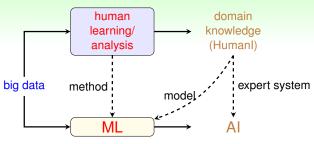
ML Techniques

Deep Learning

pprox board analysis in human brain

(CC-BY-SA 2.0 by Frej Bjon on Wikipedia)

Reinforcement Learn.


≈ (self)-practice in human training

(Public Domain, from Wikipedia)

good AI: important to use the right techniques—ML & others, including human

Full Picture of ML for Modern Al

Human Learning

- subjective
- produce domain knowledge
- fast basic solution

Machine Learning

- objective
- leverage computing power
- continuous improvement

tip: use humans as much as possible first before going to machines