
Machine Learning Techniques (NTU, Fall 2020) instructor: Hsuan-Tien Lin

Homework #5
RELEASE DATE: 12/04/2020

RED BUG FIX: 12/11/2020 17:00

BLUE BUG FIX: 12/16/2020 15:30

GREEN BUG FIX: 12/25/2020 02:40

DUE DATE: 12/25/2020 (MERRY XMAS!!), BEFORE 13:00 on Gradescope

RANGE: MOOC LECTURES 201-204 (WITH BACKGROUND FROM ML FOUNDATIONS)

QUESTIONS ARE WELCOMED ON THE NTU COOL FORUM.

We will instruct you on how to use Gradescope to upload your choices and your scanned/printed solutions.
For problems marked with (*), please follow the guidelines on the course website and upload your source
code to Gradescope as well. You are encouraged to (but not required to) include a README to help the
TAs check your source code. Any programming language/platform is allowed.

Any form of cheating, lying, or plagiarism will not be tolerated. Students can get zero scores and/or fail
the class and/or be kicked out of school and/or receive other punishments for those kinds of misconducts.

Discussions on course materials and homework solutions are encouraged. But you should write the final
solutions alone and understand them fully. Books, notes, and Internet resources can be consulted, but
not copied from.

Since everyone needs to write the final solutions alone, there is absolutely no need to lend your homework
solutions and/or source codes to your classmates at any time. In order to maximize the level of fairness
in this class, lending and borrowing homework solutions are both regarded as dishonest behaviors and will
be punished according to the honesty policy.

You should write your solutions in English or Chinese with the common math notations introduced in
class or in the problems. We do not accept solutions written in any other languages.

This homework set comes with 400 points. For each problem, there is one correct choice.
For most of the problems, if you choose the correct answer, you get 20 points; if you
choose an incorrect answer, you get −10 points. That is, the expected value of random
guessing is −20 per problem, and if you can eliminate two of the choices accurately,
the expected value of random guessing on the remaining three choices would be 0 per
problem. For other problems, the TAs will check your solution in terms of the written
explanations and/or code. The solution will be given points between [−20, 20] based on
how logical your solution is.

Hard-Margin SVM and Large Margin

1. (Lecture 201) Consider a three-example data set in 1D: {(xn, yn)}3n=1 = {(−2,−1), (0,+1), (2,−1)},
and a polynomial transform φ(x) = [1, x, x2]T . Apply the hard-margin SVM on the transformed
examples {(φ(xn), yn)}3n=1 to get the optimal (b∗,w∗) in the transformed space. What is the opti-
mal w∗1 that corresponds to the “constant” feature transform? Choose the correct answer; provide
steps of your “human optimization” like page 17 of Lecture 201 slides.

[a] w∗1 = 4

[b] w∗1 = 2

[c] w∗1 = 1

[d] w∗1 = 0

[e] w∗1 = −1
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(Hint: If you must, you can use the fact that all three examples are support vector candidates (i.e.
on the fat boundary) for this problem and the next one. But you can also challenge itself by solving
it without using this fact first.)
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2. (Lecture 201) Following Problem 1, what is the margin achieved by the optimal solution? Choose
the correct answer; provide steps of your “human optimization” like page 17 of Lecture
201 slides.

[a] 1

[b] 2

[c] 4

[d] 8

[e] 16

(Hint: You can use the same hint as the previous problem, and write your solution steps for both
problems together if needed. Page 14 of Lecture 201 slides should remind you the relationship
between (b∗,w∗) and the margin.)

3. (Lecture 201) Consider N “linearly separable” 1D examples {(xn, yn)}Nn=1. That is, xn ∈ R.
Without loss of generality, assume that x1 ≤ x2 ≤ . . . xM < xM+1 ≤ xM+2 . . . ≤ xN , yn = −1 for
n = 1, 2, . . . ,M , and yn = +1 for n = M + 1,M + 2, . . . , N . Apply hard-margin SVM without
transform on this data set. What is the largest margin achieved? Choose the correct answer;
explain your answer.

[a] 1
2 (xN − xM )

[b] 1
2 (xM+1 − x1)

[c] 1
2

(
1

N−M

N∑
n=M+1

xn − 1
M

M∑
n=1

xn

)
[d] 1

2 (xN − x1)

[e] 1
2 (xM+1 − xM )

(Hint: Have we mentioned that a decision stump is just a 1D perceptron, and the hard-margin SVM
is an extension of the perceptron model? :-))

4. (Lecture 201) Two points x1 and x2 are sampled from a uniform distribution in [0, 1]. Consider a
large-margin perceptron algorithm that either returns a 1D perceptron with margin at least ρ, or
returns a default constant hypothesis of h(x) = −1. For ρ ∈ [0, 0.5], what is the expected number
of dichotomies that this algorithm can produce, where expectation is taken over the process that
generated (x1, x2)? Choose the correct answer; explain your answer.

[a] 2 + 2 · (1− 2ρ)2

[b] 2 + 2 · (2ρ)2

[c] 4 · (1− 2ρ)2

[d] 2− 2 · (1− 2ρ)2

[e] 2− 2 · (2ρ)2

(Hint: We are mimicking page 24 of Lecture 201 here, and you are encouraged to think about the
distance between two points.)
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Dual Problem of Quadratic Programming

In the hard-margin SVM that we introduced in class, we hope to get a hyperplane such that the margin
to the positive examples is the same as the margin to the negative examples. Sometimes we need to have
different margins for different classes. The need can be written as the following uneven-margin SVM (in
its linear form) with parameters ρ+ > 0 and ρ− > 0:

min
b,w

1

2
wTw

subject to yn(wTxn + b) ≥ ρ+ for n such that yn = +1

yn(wTxn + b) ≥ ρ− for n such that yn = −1.

Our original hard-margin SVM is just a special case with ρ+ = ρ− = 1.

5. (Lecture 202) The dual problem of the uneven-margin SVM can be written as

min
α

1

2

N∑
n=1

N∑
m=1

αnαmynymxTnxm + �

subject to

N∑
n=1

ynαn = 0

αn ≥ 0 for n = 1, 2, . . . , N.

What is �? Choose the correct answer; explain your answer.

[a] −
∑N
n=1 ρ

−1
+ Jyn = +1Kαn −

∑N
n=1 ρ

−1
− Jyn = −1Kαn

[b] −
∑N
n=1 ρ

0
+ Jyn = +1Kαn −

∑N
n=1 ρ

0
− Jyn = −1Kαn

[c] −
∑N
n=1 ρ+ Jyn = +1Kαn −

∑N
n=1 ρ− Jyn = −1Kαn

[d] −
∑N
n=1 ρ

2
+ Jyn = +1Kαn −

∑N
n=1 ρ

2
− Jyn = −1Kαn

[e] none of the other choices

6. (Lecture 202) Let α∗ be an optimal solution of the original hard-margin SVM (i.e. even margin).
Which of the following is an optimal solution of the uneven-margin SVM for a given pair of non-
negative (ρ−, ρ+)? Choose the correct answer; explain your answer.

[a] α∗

[b]
√
ρ+ · ρ−α∗

[c] 2
ρ++ρ−

α∗

[d]
ρ2++ρ2−

2 α∗

[e] ρ++ρ−
2 α∗

Properties of Kernels

7. (Lecture 203) Let K(x,x′) = φ(x)Tφ(x′) be a valid kernel function with range ⊆ [0, 2). Which
of the following function is not always a valid kernel? Choose the correct answer; explain your
answer either by providing a counter-example of your choice (highly recommended),
or by explaining why other choices are all valid kernels.

[a] 2K(x,x′)

[b] (2−K(x,x′))−2

[c] 2 +K(x,x′)

[d] log2K(x,x′)

[e] (K(x,x′))2
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8. (Lecture 203) For any feature transform φ from X to Z, the squared distance between two examples
x and x′ is ‖φ(x)−φ(x′)‖2 in the Z-space. For the Gaussian kernel K(x,x′) = exp(−γ‖x−x′‖2),
compute the squared distance with the kernel trick. Then, for any two examples x and x′, what
is the tightest upper bound for their squared distance in the Z-space? Choose the correct answer;
explain your answer.

[a] 0

[b] 1

[c] 2

[d] 3

[e] 4

9. (Lecture 203) For a set of examples {(xn, yn)}Nn=1 and a kernel function K, consider a hypothesis
set that contains

hα,b(x) = sign

(
N∑
n=1

ynαnK(xn,x) + b

)
.

The classifier returned by SVM can be viewed as one such hα,b, where the values of α is determined
by the dual QP solver and b is calculated from the KKT conditions.

In this problem, we study a simpler form of hα,b where α = 1 (the vector of all 1’s) and b = 0. Let

us name h1,0 as ĥ for simplicity. We will show that when using the Gaussian kernel K(x,x′) =

exp(−γ‖x − x′‖2), if γ is large enough, Ein(ĥ) = 0. That is, when using the Gaussian kernel, we
can “easily” separate the given data set if γ is large enough.

Assume that the distance between any pair of different (xn,xm) in the X -space is no less than ε.
That is,

‖xn − xm‖ ≥ ε ∀n 6= m.

What is the tightest lower bound of γ that ensures Ein(ĥ) = 0? Choose the correct answer; explain
your answer.

[a] ln2(N+1)
ε2

[b] ln(N+1)
ε2

[c] ln(N)
ε2

[d] ln(N−1)
ε2

[e] ln2(N−1)
ε2
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Kernel Perceptron Learning Algorithm

10. (Lecture 203) In this problem, we are going to apply the kernel trick to the perceptron learning
algorithm introduced in Machine Learning Foundations. If we run the perceptron learning algo-
rithm on the transformed examples {(φ(xn), yn)}Nn=1, the algorithm updates wt to wt+1 when the
current wt makes a mistake on (φ(xn(t)), yn(t)):

wt+1 ← wt + yn(t)φ(xn(t))

Because every update is based on one (transformed) example, if we take w0 = 0, we can represent
every wt as a linear combination of {φ(xn)}Nn=1. We can then maintain the linear combination
coefficients instead of the whole w. Assume that we maintain an N -dimensional vector αt in the
t-th iteration such that

wt =

N∑
n=1

αt,nφ(xn)

for t = 0, 1, 2, . . .. Set α0 = 0 (N zeros) to match w0 = 0 (d̃+ 1 zeros). How should αt be updated
to αt+1 when the current wt (represented by αt) makes a mistake on (φ(xn(t)), yn(t))? Choose the
correct answer; explain your answer.

[a] αt+1 ← αt except αt+1,n(t) ← αt,n(t) + 1

[b] αt+1 ← αt except αt+1,n(t) ← αt,n(t) − 1

[c] αt+1 ← αt except αt+1,n(t) ← αt,n(t) + yn(t)

[d] αt+1 ← αt except αt+1,n(t) ← αt,n(t) − yn(t)
[e] αt+1 ← αt + y

(Hint: Although we did not teach Lecture 205, if you have watched it by yourself from YouTube,
you will find its page 15 loosely related. You should be able to solve this problem without watching
Lecture 205, though.)

11. (Lecture 203) Following Problem 10, the update rule takes care of the training iterations. In
addition, we need to evaluate wT

t φ(x) not only for predicting new x but also for checking whether
wt makes any mistake on some example x during training. Which of the following equation
computes wT

t φ(x) with the kernel trick K(x,x′) = φ(x)Tφ(x′)? Choose the correct answer;
explain your answer.

[a]
∑N
n=1 αt,nK(xn,x)

[b] −
∑N
n=1 αt,nK(xn,x)

[c]
∑N
n=1 ynαt,nK(xn,x)

[d]
∑N
n=1 α

2
t,n(K(xn,x))2

[e]
∑N
n=1 α

2
t,nK(xn,x)
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Soft-Margin SVM

12. (Lecture 204) Consider the soft-margin SVM taught in our class. Assume that after solving the
dual problem, every example is a bounded support vector. That is, the optimal solution α∗ satisfies
α∗n = C for every example. In this case, there may be multiple solutions for the optimal b∗ for
the primal SVM problem. What is the largest such b∗? Choose the correct answer; explain your
answer.

[a] min
n=1,2,...,N

(
1−

∑N
m=1 ymα

∗
mK(xn, xm)

)
[b] min

n : yn>0

(
1−

∑N
m=1 ymα

∗
mK(xn, xm)

)
[c] min

n : yn<0

(
1−

∑N
m=1 ymα

∗
mK(xn, xm)

)
[d] average

n : yn>0

(
1−

∑N
m=1 ymα

∗
mK(xn, xm)

)
[e] average

n : yn<0

(
1−

∑N
m=1 ymα

∗
mK(xn, xm)

)
13. (Lecture 204) In class, we taught the non-linear soft-margin SVM as follows.

(P1) min
w,b,ξ

1

2
wTw + C

N∑
n=1

ξn

subject to yn

(
wTφ(xn) + b

)
≥ 1− ξn, for n = 1, 2, . . . , N,

ξn ≥ 0, for n = 1, 2, . . . , N.

The SVM penalizes the margin violation linearly. Another popular formulation penalizes the
margin violation quadratically. In this problem, we derive the dual of such a formulation. The
formulation as follows:

(P2) min
w,b,ξ

1

2
wTw + C

N∑
n=1

ξ2n

subject to yn

(
wTφ(xn) + b

)
≥ 1− ξn, for n = 1, 2, . . . , N.

We do not have the ξn ≥ 0 constraints as any negative ξn would never be an optimal solution of
(P2)—you are encouraged to think about why. Anyway, the dual problem of (P2) will look like
this:

(D2) min
α

1

2

N∑
n=1

N∑
m=1

αnαmynym · ♦−
N∑
n=1

αn

subject to

N∑
n=1

ynαn = 0

αn ≥ 0, for n = 1, 2, . . . , N.

Let the kernel function K(x,x′) = φ(x)Tφ(x′). What is ♦? Choose the correct answer; explain
your answer.

[a] (2C ·K(xn,xm))

[b] (K(xn,xm) + 2C Jn = mK)

[c] (K(xn,xm) + C Jn = mK)

[d] (K(xn,xm) + 1
C Jn = mK)

[e] (K(xn,xm) + 1
2C Jn = mK)
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14. (Lectures 202/204) After getting the optimal α∗ for (D2), how can we calculate the optimal ξ∗ for
(P2)? Choose the correct answer; explain your answer.

[a] ξ∗ = α∗

[b] ξ∗ = 2α∗

[c] ξ∗ = Cα∗

[d] ξ∗ = 1
Cα
∗

[e] ξ∗ = 1
2Cα

∗

Experiments with Soft-Margin SVM

For Problems 15 to 20, we are going to experiment with a real-world data set. Download the processed
satimage data sets from LIBSVM Tools.

Training: https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass/satimage.scale

Testing: https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass/satimage.scale.t

We will consider binary classification problems of the form “one of the classes” (as the positive class)
versus “the other classes” (as the negative class).

The data set contains thousands of examples, and some quadratic programming packages cannot
handle this size. We recommend that you consider the LIBSVM package

http://www.csie.ntu.edu.tw/~cjlin/libsvm/

Regardless of the package that you choose to use, please read the manual of the package carefully to
make sure that you are indeed solving the soft-margin support vector machine taught in class like the
dual formulation below:

min
α

1

2

N∑
n=1

N∑
m=1

αnαmynymK(xn,xm)−
N∑
n=1

αn

subjectto

N∑
n=1

ynαn = 0

0 ≤ αn ≤ C n = 1, . . . , N.

In the following problems, please use the 0/1 error for evaluating Ein, Eval and Eout (through the test
set). Some practical remarks include

(i) Please tell your chosen package to not automatically scale the data for you, lest you should change
the effective kernel and get different results.

(ii) It is your responsibility to check whether your chosen package solves the designated formulation
with enough numerical precision. Please read the manual of your chosen package for software
parameters whose values affect the outcome—any ML practitioner needs to deal with this kind of
added uncertainty.
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15. (Lectures 201/204, *) Consider the linear soft-margin SVM. That is, either solve the primal for-
mulation of soft-margin SVM with the given xn, or take the linear kernel K(xn,xm) = xTnxm in
the dual formulation. With C = 10, and the binary classification problem of “3” versus “not 3”,
which of the following numbers is closest to ‖w‖ after solving the linear soft-margin SVM? Choose
the closest answer; provide your command/code.

[a] 7.0

[b] 7.5

[c] 8.0

[d] 8.5

[e] 9.0

16. (Lectures 203/204, *) Consider the polynomial kernel K(xn,xm) = (1 + xTnxm)Q, where Q is the
degree of the polynomial. With C = 10, Q = 2, which of the following soft-margin SVM classifiers
reaches the lowest Ein? Choose the correct answer; provide your command/code.

[a] “1” versus “not 1”

[b] “2” versus “not 2”

[c] “3” versus “not 3”

[d] “4” versus “not 4”

[e] “5” versus “not 5”

17. (Lectures 203/204, *) Following Problem 16, which of the following numbers is closest to the
maximum number of support vectors within those five soft-margin SVM classifiers? Choose the
closest answer; provide your command/code.

[a] 500

[b] 600

[c] 700

[d] 800

[e] 900

18. (Lectures 203/204, *) Consider the Gaussian kernel K(xn,xm) = exp
(
−γ||xn − xm||2

)
. For the

binary classification problem of “6” versus “not 6”, when fixing γ = 10, which of the following
values of C results in the lowest Eout? Choose the correct answer; provide your command/code.

[a] 0.01

[b] 0.1

[c] 1

[d] 10

[e] 100

19. (Lectures 203/204, *) Following Problem 18, when fixing C = 0.1, which of the following values of
γ results in the lowest Eout? Choose the correct answer; provide your command/code.

[a] 0.1

[b] 1

[c] 10

[d] 100

[e] 1000
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20. (Lectures 203/204, *) Following Problem 18 and consider a validation procedure that randomly
samples 200 examples from the training set for validation and leaves the other examples for training
g−svm. Fix C = 0.1 and use the validation procedure to choose the best γ among {0.1, 1, 10, 100, 1000}
according to Eval. If there is a tie of Eval, choose the smallest γ. Repeat the procedure 1000 times.
Which of the following values of γ is selected the most number of times? Choose the correct answer;
provide your command/code.

[a] 0.1

[b] 1

[c] 10

[d] 100

[e] 1000
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