
Machine Learning Foundations (NTU, Fall 2020) instructor: Hsuan-Tien Lin

Homework #3
RELEASE DATE: 10/30/2020

RED BUG FIX: 11/04/2020 09:45

BLUE BUG FIX: 11/12/2020 16:30

DUE DATE: 11/20 (THREE WEEKS, YEAH!!), BEFORE 13:00 on Gradescope

QUESTIONS ARE WELCOMED ON THE NTU COOL FORUM.

We will instruct you on how to use Gradescope to upload your choices and your scanned/printed solutions.
For problems marked with (*), please follow the guidelines on the course website and upload your source
code to Gradescope as well. You are encouraged to (but not required to) include a README to help the
TAs check your source code. Any programming language/platform is allowed.

Any form of cheating, lying, or plagiarism will not be tolerated. Students can get zero scores and/or fail
the class and/or be kicked out of school and/or receive other punishments for those kinds of misconducts.

Discussions on course materials and homework solutions are encouraged. But you should write the final
solutions alone and understand them fully. Books, notes, and Internet resources can be consulted, but
not copied from.

Since everyone needs to write the final solutions alone, there is absolutely no need to lend your homework
solutions and/or source codes to your classmates at any time. In order to maximize the level of fairness
in this class, lending and borrowing homework solutions are both regarded as dishonest behaviors and will
be punished according to the honesty policy.

You should write your solutions in English or Chinese with the common math notations introduced in
class or in the problems. We do not accept solutions written in any other languages.

This homework set comes with 400 points. For each problem, there is one correct choice.
For most of the problems, if you choose the correct answer, you get 20 points; if you
choose an incorrect answer, you get −10 points. That is, the expected value of random
guessing is −20 per problem, and if you can eliminate two of the choices accurately,
the expected value of random guessing on the remaining three choices would be 0 per
problem. For other problems, the TAs will check your solution in terms of the written
explanations and/or code. The solution will be given points between [−20, 20] based on
how logical your solution is.

Linear Regression

1. Consider a noisy target y = wT
f x + ε, where x ∈ Rd+1 (including the added coordinate x0 = 1),

y ∈ R, wf ∈ Rd+1 is an unknown vector, and ε is an i.i.d. noise term with zero mean and σ2

variance. Assume that we run linear regression on a training data set D = {(x1, y1), . . . , (xN , yN )}
generated i.i.d. from some P (x) and the noise process above, and obtain the weight vector wlin.
As briefly discussed in Lecture 9, it can be shown that the expected in-sample error Ein(wlin) with
respect to D is given by:

ED [Ein(wlin)] = σ2

(
1− d+ 1

N

)
.

For σ = 0.1 and d = 11, what is the smallest number of examples N such that ED [Ein(wlin)] is no
less than 0.006? Choose the correct answer; explain your answer.

[a] 25

[b] 30

[c] 35

[d] 40
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[e] 45

2. As shown in Lecture 9, minimizing Ein(w) for linear regression means solving ∇Ein(w) = 0, which
in term means solving the so-called normal equation

XTXw = XTy.

Which of the following statement about the normal equation is correct for any features X and
labels y? Choose the correct answer; explain your answer.

[a] There exists at least one solution for the normal equation.

[b] If there exists a solution for the normal equation, Ein(w) = 0 at such a solution.

[c] If there exists a unique solution for the normal equation, Ein(w) = 0 at the solution.

[d] If Ein(w) = 0 at some w, there exists a unique solution for the normal equation.

[e] none of the other choices

3. In Lecture 9, we introduced the hat matrix H = XX† for linear regression. The matrix projects the
label vector y to the “predicted” vector ŷ = Hy and helps us analyze the error of linear regression.
Assume that XTX is invertible, which makes H = X(XTX)−1XT . Now, consider the following
operations on X. Which operation can possibly change H? Choose the correct answer; explain
your answer.

[a] multiplying the whole matrix X by 2 (which is equivalent to scaling all input vectors by 2)

[b] multiplying each of the i-th column of X by i (which is equivalent to scaling the i-th feature
by i)

[c] multiplying each of the n-th row of X by 1
n (which is equivalent to scaling the n-th example

by 1
n )

[d] adding three randomly-chosen columns i, j, k to column 1 of X
(i.e., xn,1 ← xn,1 + xn,i + xn,j + xn,k)

[e] none of the other choices (i.e. all other choices are guaranteed to keep H unchanged.)

Likelihood and Maximum Likelihood

4. Consider a coin with an unknown head probability θ. Independently flip this coin N times to
get y1, y2, . . . , yN , where yn = 1 if the n-th flipping results in head, and 0 otherwise. Define
ν = 1

N

∑N
n=1 yn. How many of the following statements about ν are true? Choose the correct

answer; explain your answer by illustrating why those statements are true.

• Pr(|ν − θ| > ε) ≤ 2 exp(−2ε2N) for all N ∈ N and ε > 0.

• ν maximizes likelihood(θ̂) over all θ̂ ∈ [0, 1].

• ν minimizes Ein(ŷ) = 1
N

∑N
n=1(ŷ − yn)2 over all ŷ ∈ R.

• 2 · ν is the negative gradient direction −∇Ein(ŷ) at ŷ = 0.

(Note: θ is similar to the role of the “target function” and θ̂ is similar to the role of the “hypothesis”
in our machine learning framework.)

[a] 0

[b] 1

[c] 2

[d] 3

[e] 4
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5. Let y1, y2, . . . , yN be N values generated i.i.d. from a uniform distribution [0, θ] with some un-

known θ. For any θ̂ ≥ max(y1, y2, . . . , yN ), what is its likelihood? Choose the correct answer;
explain your answer.

[a]
(

1
θ̂

)N
[b]

∑N
n=1

yn
θ̂

[c]
∏N
n=1

yn
θ̂

[d] max(y1,...,yN )

θ̂

[e] min(y1,...,yN )

θ̂

(Hint: Those who are interested in more math [who isn’t? :-)] are encouraged to try to derive the
maximum-likelihood estimator.)

Gradient and Stochastic Gradient Descent

6. In the perceptron learning algorithm, we find one example (xn(t), yn(t)) that the current weight
vector wt mis-classifies, and then update wt by

wt+1 ← wt + yn(t)xn(t).

A variant of the algorithm finds all examples (xn, yn) that the weight vector wt mis-classifies
(e.g. yn 6= sign(wT

t xn)), and then update wt by

wt+1 ← wt +
η

N

∑
n : yn 6=sign(wT

t xn)

ynxn.

The variant can be viewed as optimizing some Ein(w) that is composed of one of the following point-
wise error functions with a fixed learning rate gradient descent (neglecting any non-differentiable
spots of Ein). What is the error function? Choose the correct answer; explain your answer.

[a] err(w,x, y) = |1− ywTx|
[b] err(w,x, y) = max(0,−ywTx)

[c] err(w,x, y) = −ywTx

[d] err(w,x, y) = min(0,−ywTx)

[e] err(w,x, y) = max(0, 1− ywTx)

7. Besides the error functions introduced in the lectures so far, the following error function, ex-
ponential error, is also widely used by some learning models. The exponential error is defined
by errexp(w,x, y) = exp(−ywTx). If we want to use stochastic gradient descent to minimize
an Ein(w) that is composed of the error function, which of the following is the update direction
−∇ errexp(w,xn, yn) for the chosen (xn, yn) with respect to wt? Choose the correct answer; explain
your answer.

[a] +ynxn exp(−ynwTxn)

[b] −ynxn exp(−ynwTxn)

[c] +xn exp(−ynwTxn)

[d] −xn exp(−ynwTxn)

[e] none of the other choices
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Hessian and Newton Method

8. Let E(w) : Rd → R be a function. Denote the gradient bE(w) and the Hessian AE(w) by

bE(w) = ∇E(w) =


∂E
∂w1

(w)
∂E
∂w2

(w)
...

∂E
∂wd

(w)


d×1

and AE(w) =


∂2E
∂w2

1
(w) ∂2E

∂w1∂w2
(w) . . . ∂2E

∂w1∂wd
(w)

∂2E
∂w2∂w1

(w) ∂2E
∂w2

2
(w) . . . ∂2E

∂w2∂wd
(w)

...
...

. . .
...

∂2E
∂wd∂w1

(w) ∂2E
∂wd∂w2

(w) . . . ∂2E
∂w2

d
(w)


d×d

.

Then, the second-order Taylor’s expansion of E(w) around u is:

E(w) ≈ E(u) + bE(u)T (w − u) +
1

2
(w − u)TAE(u)(w − u).

Suppose AE(u) is positive definite. What is the optimal direction v such that w← u+v minimizes
the right-hand-side of the Taylor’s expansion above? Choose the correct answer; explain your
answer. (Note that iterative optimization with v is generally called Newton’s method.)

[a] +(AE(u))−1bE(u)

[b] −(AE(u))−1bE(u)

[c] +(AE(u))+1bE(u)

[d] −(AE(u))+1bE(u)

[e] none of the other choices

9. Following the previous problem, considering minimizing Ein(w) in linear regression problem with
Newton’s method. For any given wt, what is the Hessian AE(wt) with E = Ein? Choose the
correct answer; explain your answer.

[a] 2
NXTXwtw

T
t

[b] 2
NXTX

[c] 2
NXXT

[d] 2
NXTyyTX

[e] none of the other choices
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Multinomial Logistic Regression

10. In Lecture 11, we solve multiclass classification by OVA or OVO decompositions. One alternative to
deal with multiclass classification is to extend the original logistic regression model to Multinomial
Logistic Regression (MLR). For a K-class classification problem, we will denote the output space
Y = {1, 2, · · · ,K}. The hypotheses considered by MLR can be indexed by a matrix

W =

 | | · · · | · · · |
w1 w2 · · · wk · · · wK

| | · · · | · · · |


(d+1)×K

,

that contains weight vectors (w1, · · · ,wK), each of length d+1. The matrix represents a hypothesis

hy(x) =
exp(wT

y x)∑K
i=1 exp(wT

i x)

that can be used to approximate the target distribution P (y|x) for any (x, y). MLR then seeks for
the maximum likelihood solution over all such hypotheses. For a given data set {(x1, y1), . . . , (xN , yN )}
generated i.i.d. from some P (x) and target distribution P (y|x), the likelihood of hy(x) is propor-

tional to
∏N
n=1 hyn(xn). That is, minimizing the negative log likelihood is equivalent to minimizing

an Ein(W) that is composed of the following error function

err(W,x, y) = − lnhy(x) = −
K∑
k=1

Jy = kK lnhk(x).

When minimizing Ein(W) with SGD, we need to compute ∂err(W,x,y)
∂Wik

. What is the value of the
partial derivative? Choose the correct answer; explain your answer.

[a] (hk(x) + Jy = kK)xi
[b] (hk(x)− Jy = kK)xi
[c] (−hk(x) + Jy = kK)xi
[d] (−hk(x)− Jy = kK)xi
[e] none of the other choices

11. Following the previous problem, consider a data set with K = 2 and obtain the optimal solution
from MLR as (w∗1,w

∗
2). Now, relabel the same data set by replacing yn with y′n = 2yn − 3 to form

a binary classification data set. Which of the following is an optimal solution for logistic regression
on the binary classification data set? Choose the correct answer; explain your answer.

[a] w∗2 + w∗1

[b] w∗1 −w∗2

[c] 1
2 (w∗2 −w∗1)

[d] 2(w∗1 −w∗2)

[e] w∗2 −w∗1
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Nonlinear Transformation

12. Given the following training data set:

x1 = (0, 1), y1 = −1 x2 = (1,−0.5), y2 = −1 x3 = (−1, 0), y3 = −1

x4 = (−1, 2), y4 = +1 x5 = (2, 0), y5 = +1 x6 = (1,−1.5), y6 = +1 x7 = (0,−2), y7 = +1

Using the quadratic transform Φ2(x) = (1, x1, x2, x
2
1, x1x2, x

2
2), which of the following weights w̃T

in the Z-space can separate all of the training data correctly? Choose the correct answer; (no, you
don’t need to explain your answer :-)).

[a] [−9,−1, 0, 2,−2, 3]

[b] [−5,−1, 2, 3,−7, 2]

[c] [9,−1, 4, 2,−2, 3]

[d] [2, 1,−4,−2, 7,−4]

[e] [−7, 0, 0, 2,−2, 3]

13. Consider the following feature transform, which maps x ∈ Rd to z ∈ R1+1, keeping only the k-
th coordinate of x: Φ(k)(x) = (1, xk). Let Hk be the set of hypothesis that couples Φ(k) with

perceptrons. Among the following choices, which of is the tightest upper bound of dvc

(⋃d
k=1Hk

)
for d ≥ 4? Choose the correct answer; explain your answer. (Hint: You can use the fact that
log2 d ≤ d

2 for d ≥ 4 if needed.)

[a] 2((log2 log2 d) + 1)

[b] 2((log2 d) + 1)

[c] 2((d log2 d) + 1)

[d] 2(d+ 1)

[e] 2(d2 + 1)

Experiments with Linear and Nonlinear Models

Next, we will play with linear regression, logistic regression, non-linear transform, and their use for
binary classification. Please use the following set for training:

https://www.csie.ntu.edu.tw/~htlin/course/ml20fall/hw3/hw3_train.dat

and the following set for testing (estimating Eout):

https://www.csie.ntu.edu.tw/~htlin/course/ml20fall/hw3/hw3_test.dat

Each line of the data set contains one (xn, yn) with xn ∈ R10. The first 10 numbers of the line
contains the components of xn orderly, the last number is yn, which belongs to {−1,+1} ⊆ R. That is,
we can use those yn for either binary classification or regression.

14. (*) Add xn,0 = 1 to each xn. Then, implement the linear regression algorithm on page 11 of
Lecture 9. What is Esqr

in (wlin), where Esqr
in denotes the averaged squared error over N examples?

Choose the closest answer; provide your code.

[a] 0.00

[b] 0.20

[c] 0.40

[d] 0.60

[e] 0.80
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15. (*) Add xn,0 = 1 to each xn. Then, implement the SGD algorithm for linear regression using the
results on pages 10 and 12 of Lecture 11. Pick one example uniformly at random in each iteration,
take η = 0.001 and initialize w with w0 = 0. Run the algorithm until Esqr

in (wt) ≤ 1.01Esqr
in (wlin),

and record the total number of iterations taken. Repeat the experiment 1000 times, each with
a different random seed. What is the average number of iterations over the 1000 experiments?
Choose the closest answer; provide your code.

[a] 600

[b] 1200

[c] 1800

[d] 2400

[e] 3000

16. (*) Add xn,0 = 1 to each xn. Then, implement the SGD algorithm for logistic regression by
replacing the SGD update step in the previous problem with the one on page 10 of Lecture 11.
Pick one example uniformly at random in each iteration, take η = 0.001 and initialize w with
w0 = 0. Run the algorithm for 500 iterations. Repeat the experiment 1000 times, each with
a different random seed. What is the average Ece

in (w500) over the 1000 experiments, where Ece
in

denotes the averaged cross-entropy error over N examples? Choose the closest answer; provide
your code.

[a] 0.44

[b] 0.50

[c] 0.56

[d] 0.62

[e] 0.68

17. (*) Repeat the previous problem, but with w initialized by w0 = wlin of Problem 14 instead. Repeat
the experiment 1000 times, each with a different random seed. What is the average Ece

in (w500) over
the 1000 experiments? Choose the closest answer; provide your code.

[a] 0.44

[b] 0.50

[c] 0.56

[d] 0.62

[e] 0.68

18. (*) Following Problem 14, what is
∣∣∣E0/1

in (wlin)− E0/1
out (wlin)

∣∣∣, where 0/1 denotes the 0/1 error (i.e.

using wlin for binary classification), and E
(0/1)
out is estimated using the test set provided above?

Choose the closest answer; provide your code.

[a] 0.32

[b] 0.36

[c] 0.40

[d] 0.44

[e] 0.48
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19. (*) Next, consider the following homogeneous order-Q polynomial transform

Φ(x) = (1, x1, x2, ..., x10, x
2
1, x

2
2, ..., x

2
10, ..., x

Q
1 , x

Q
2 , ..., x

Q
10).

Transform the training and testing data according to Φ(x) with Q = 3, and again implement the

linear regression algorithm on page 11 of lecture 9. What is
∣∣∣E0/1

in (g)− E0/1
out (g)

∣∣∣, where g is the

hypothesis returned by the transform + linear regression procedure? Choose the closest answer;
provide your code.

[a] 0.32

[b] 0.36

[c] 0.40

[d] 0.44

[e] 0.48

20. (*) Repeat the previous problem, but with Q = 10 instead. What is
∣∣∣E0/1

in (g)− E0/1
out (g)

∣∣∣? Choose

the closest answer; provide your code.

[a] 0.32

[b] 0.36

[c] 0.40

[d] 0.44

[e] 0.48
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