Machine Learning for Modern Artificial Intelligence

林軒田 Hsuan-Tien Lin htlin@csie.ntu.edu.tw

 沛星互動科技
 國立台灣大學

 Appier
 National Taiwan University

 Coppier
 ())

Frontiers of Sciences and Humanities Seminar Series Academia Sinica, 2018/11/15

Hsuan-Tien Lin (Appier/NTU)

ML for (Modern) AI

Outline

ML for (Modern) AI

ML Research for Modern Al

ML for Future AI

Hsuan-Tien Lin (Appier/NTU)

From Intelligence to Artificial Intelligence

intelligence: thinking and acting smartly

- humanly
- rationally

artificial intelligence: computers thinking and acting smartly

- humanly
- rationally

humanly ≈ smartly ≈ rationally —are humans rational? :-)

Humanly versus Rationally

What if your self-driving car decides one death is better than two—and that one is you? (The Washington Post http://wpo.st/ZK-51)

You're humming along in your self-driving car, chatting on your iPhone 37 while the machine navigates on its own. Then a swarm of people appears in the street, right in the path of the oncoming vehicle.

Car Acting Humanly

to save my (and passengers') life, stay on track

Car Acting Rationally

avoid the crowd and crash the owner for minimum total loss

which is smarter?

-depending on where I am, maybe? :-)

Hsuan-Tien Lin (Appier/NTU)

(Traditional) Artificial Intelligence

Thinking Humanly

 cognitive modeling —now closer to Psychology than AI

Thinking Rationally

 formal logic—now closer to Theoreticians than AI practitioners

Acting Humanly

- dialog systems
- humanoid robots
- computer vision

Acting Rationally

- recommendation systems
- cleaning robots
- cross-device ad placement

acting humanly or rationally: more academia/industry attentions nowadays

Traditional vs. Modern [My] Definition of AI

Traditional Definition

humanly \approx intelligently \approx rationally

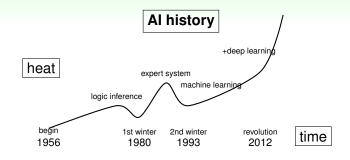
My Definition

intelligently \approx easily is your smart phone 'smart'? :-)

user-needs-driven AI is important

Examples of User-Needs-Driven AI

AI Milestones



first AI winter: AI cannot solve 'combinatorial explosion' problems

second AI winter: expert system failed to scale

reason of winters: expectation mismatch

Hsuan-Tien Lin (Appier/NTU)

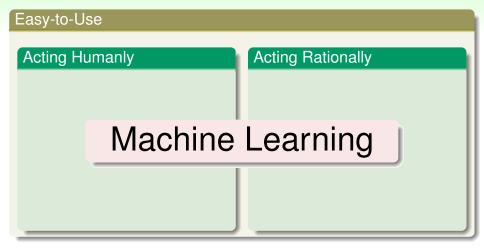
What's Different Now?

More DataBetter Algorithms• cheaper storage• decades of research• Internet companies• decades of research• e.g. deep learningFaster Computation• cloud computing• GPU computing• key breakthroughs

data-enabled AI: mainstream nowadays

ML for (Modern) AI

Machine Learning and AI

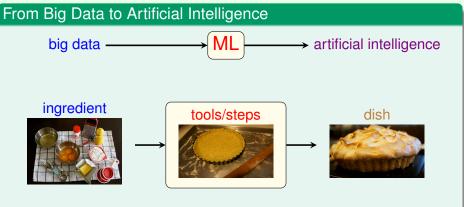


machine learning: core behind modern (data-enabled) AI

Hsuan-Tien Lin (Appier/NTU)

ML for (Modern) AI

ML Connects Big Data and AI



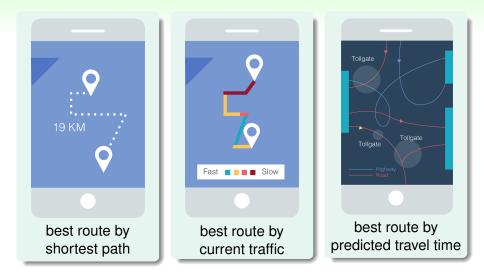
(Photos Licensed under CC BY 2.0 from Andrea Goh on Flickr)

Appier Chief Data Scientist \equiv restaurant Head Chef

Hsuan-Tien Lin (Appier/NTU)

ML for (Modern) AI

Bigger Data Towards Better AI

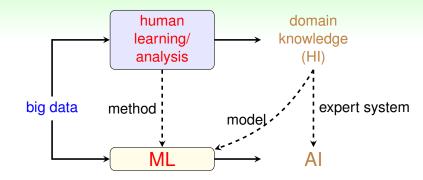


big data can make machine look smarter

Hsuan-Tien Lin (Appier/NTU)

ML for (Modern) AI

ML for Modern AI



- human sometimes faster learner on initial (smaller) data
- industry: black plum is as sweet as white

often important to leverage human learning, especially in the beginning

Hsuan-Tien Lin (Appier/NTU)

Outline

ML for (Modern) AI

ML Research for Modern AI

ML for Future AI

Hsuan-Tien Lin (Appier/NTU)

Cost-Sensitive Multiclass Classification

Hsuan-Tien Lin (Appier/NTU)

Machine Learning for Modern Artificial Intelligence

14/42

What is the Status of the Patient?

H7N9-infected

cold-infected

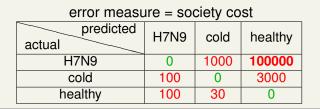
healthy

- a classification problem
 - -grouping 'patients' into different 'status'

are all mis-prediction costs equal?

Hsuan-Tien Lin (Appier/NTU)

Patient Status Prediction



- H7N9 mis-predicted as healthy: very high cost
- cold mis-predicted as healthy: high cost
- cold correctly predicted as cold: no cost

human doctors consider costs of decision; how about computer-aided diagnosis?

Our Works

	binary	multiclass
regular	well-studied	well-studied
cost-sensitive	known (Zadrozny et al., 2003)	ongoing (our works, among others)

selected works of ours

- cost-sensitive SVM (Tu and Lin, ICML 2010)
- cost-sensitive one-versus-one (Lin, ACML 2014)
- cost-sensitive deep learning (Chung et al., IJCAI 2016)

why are people not using those cool ML works for their AI? :-)

Issue 1: Where Do Costs Come From?

A Real Medical Application: Classifying Bacteria

- by human doctors: different treatments \iff serious costs
- cost matrix averaged from two doctors:

	Ab	Ecoli	HI	KP	LM	Nm	Psa	Spn	Sa	GBS
Ab	0	1	10	7	9	9	5	8	9	1
Ecoli	3	0	10	8	10	10	5	10	10	2
HI	10	10	0	3	2	2	10	1	2	10
KP	7	7	3	0	4	4	6	3	3	8
LM	8	8	2	4	0	5	8	2	1	8
Nm	3	10	9	8	6	0	8	3	6	7
Psa	7	8	10	9	9	7	0	8	9	5
Spn	6	10	7	7	4	4	9	0	4	7
Sa	7	10	6	5	1	3	9	2	0	7
GBS	2	5	10	9	8	6	5	6	8	0

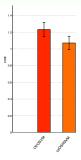
issue 2: is cost-sensitive classification really useful?

Hsuan-Tien Lin (Appier/NTU)

Machine Learning for Modern Artificial Intelligence

18/42

Cost-Sensitive vs. Traditional on Bacteria Data



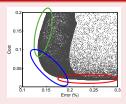
(Jan et al., BIBM 2011)

cost-sensitive better than **traditional**; but why are people **still not** using those cool ML works for their AI? :-)

Hsuan-Tien Lin (Appier/NTU)

Issue 3: Error Rate of Cost-Sensitive Classifiers

The Problem



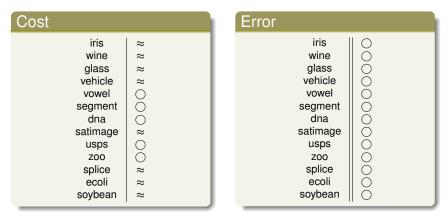
- cost-sensitive classifier: low cost but high error rate
- traditional classifier: low error rate but high cost
- how can we get the blue classifiers?: low error rate and low cost

cost-and-error-sensitive:

more suitable for real-world medical needs

Improved Classifier for Both Cost and Error

(Jan et al., KDD 2012)



now, are people using those cool ML works for their AI? :-)

Hsuan-Tien Lin (Appier/NTU)

?

Lessons Learned from Research on Cost-Sensitive Multiclass Classification

cold-infected

more realistic (generic) in academia
 ≠ more realistic (feasible) in application
 e.g. the 'cost' of inputting a cost matrix? :-)

Cross-domain collaboration important

H7N9-infected

- e.g. getting the 'cost matrix' from domain experts
- Inot easy to win human trust
 - -humans are somewhat multi-objective

healthy

Label Space Coding for Multilabel Classification

 ?: {machine learning, data structure, data mining, object oriented programming, artificial intelligence, compiler, architecture, chemistry, textbook, children book, ... etc. }

a **multilabel** classification problem: tagging input to multiple categories

Hsuan-Tien Lin (Appier/NTU)

Binary Relevance: Multilabel Classification via Yes/No

multilabel w/ L classes: L Y/N questions

machine learning (Y), data structure (N), data mining (Y), OOP (N), AI (Y), compiler (N), architecture (N), chemistry (N), textbook (Y), children book (N), etc.

- Binary Relevance approach: transformation to multiple isolated binary classification
- disadvantages:
 - **isolation**—hidden relations not exploited (e.g. ML and DM highly correlated, ML subset of AI, textbook & children book disjoint)
 - unbalanced—few yes, many no

Binary Relevance: simple (& good) benchmark with known disadvantages

Hsuan-Tien Lin (Appier/NTU)

From Label-set to Coding View

	label set	apple	orange	strawberry	binary code
	{0}	0 (N)	1 (Y)	0 (N)	[0, 1, 0]
٢	{a, o}	1 (Y)	1 (Y)	0 (N)	[1, 1, 0]
<i>.</i>	{a, s}	1 (Y)	0 (N)	1 (Y)	[1,0,1]
	{ 0 }	0 (N)	1 (Y)	0 (N)	[0, 1, 0]
	{}	0 (N)	0 (N)	0 (N)	[0,0,0]

subset of $2^{\{1,2,\cdots,L\}} \Leftrightarrow \text{length-}L \text{ binary code}$

A NIPS 2009 Approach: Compressive Sensing

General Compressive Sensing

sparse (many 0) binary vectors $\mathbf{y} \in \{0, 1\}^L$ can be **robustly** compressed by projecting to $M \ll L$ basis vectors $\{\mathbf{p}_1, \mathbf{p}_2, \cdots, \mathbf{p}_M\}$

Comp. Sensing for Multilabel Classification (Hsu et al., NIPS 2009)

- Compress: encode original data by compressive sensing
- 2 learn: get regression function from compressed data
- e decode: decode regression predictions to sparse vector by compressive sensing

Compressive Sensing: seemly strong competitor from related theoretical analysis

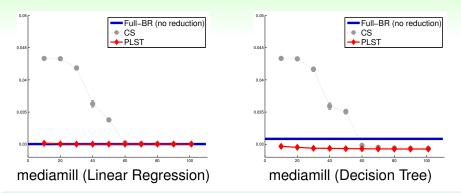
Our Proposed Approach: Compressive Sensing \Rightarrow PCA

Principal Label Space Transformation (PLST), i.e. PCA for Multilabel Classification (Tai and Lin, NC Journal 2012)

- compress: encode original data by PCA
- 2 learn: get regression function from compressed data
- decode: decode regression predictions to label vector by reverse PCA + quantization

does PLST perform better than CS?

Hamming Loss Comparison: PLST vs. CS



- PLST better than CS: faster, better performance
- similar findings across data sets and regression algorithms

Why? CS creates harder-to-learn regression tasks

Hsuan-Tien Lin (Appier/NTU)

Our Works Continued from PLST

Compression Coding (Tai & Lin, NC Journal 2012 with 186 citations)
 —condense for efficiency: better (than CS) approach PLST
 —key tool: PCA from Statistics/Signal Processing

Learnable-Compression Coding (Chen & Lin, NIPS 2012 with 124 citations)
 —condense learnably for better efficiency: better (than PLST) approach CPLST

— key tool: Ridge Regression from Statistics (+ PCA)

Cost-Sensitive Coding (Huang & Lin, ECML Journal Track 2017)
 —condense cost-sensitively towards application needs: better (than CPLST) approach CLEMS

- key tool: Multidimensional Scaling from Statistics

cannot thank statisticans enough for those tools!

Hsuan-Tien Lin (Appier/NTU)

Lessons Learned from Label Space Coding for Multilabel Classification

?: {machine learning, data structure, data mining, object oriented programming, artificial intelligence, compiler, architecture, chemistry, textbook, children book, ... etc. }

- 1 Is Statistics the same as ML? Is Statistics the same as AI?
 - does it really matter?
 - Modern AI should embrace every useful tool from other fields.
- good tools not necessarily most sophisticated tools e.g. PCA possibly more useful than CS
- more-cited paper ≠ more-useful AI solution
 —citation count not the only impact measure

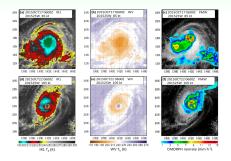
Tropical Cyclone Intensity Estimation

Hsuan-Tien Lin (Appier/NTU)

Machine Learning for Modern Artificial Intelligence

32/42

Experienced Meteorologists Can 'Feel' and Estimate Tropical Cyclone Intensity from Image



Can ML do the same/better?

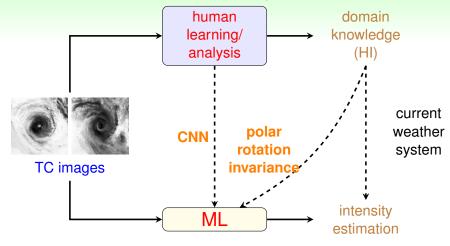
- lack of ML-ready datasets
- lack of model that properly utilizes domain knowledge

issues addressed in

our latest work (Chen et al., KDD 2018)

Hsuan-Tien Lin (Appier/NTU)

Flow behind Our Proposed Model



is proposed CNN-TC better than current weather system?

Hsuan-Tien Lin (Appier/NTU)

Results

RMS Error		
	ADT	11.75
	AMSU	14.40
	SATCON	9.66
	CNN-TC	9.03

CNN-TC much better than current weather system (SATCON)

why are people not using this cool ML model? :-)

Hsuan-Tien Lin (Appier/NTU)

Lessons Learned from Research on Tropical Cyclone Intensity Estimation

- again, cross-domain collaboration important e.g. even from 'organizing data' to be ML-ready
- not easy to claim production ready —can ML be used for 'unseenly-strong TC'?
- good AI system requires both human and machine learning —still an 'art' to blend the two

ML for Future AI

Outline

ML for (Modern) AI

ML Research for Modern Al

ML for Future AI

Hsuan-Tien Lin (Appier/NTU)

AI: Now and Next

2010–2015

Al becomes **promising**, e.g.

- initial success of deep learning on ImageNet
- mature tools for SVM (LIBSVM) and others

2016-2020

Al becomes competitive, e.g.

- super-human performance of alphaGo and others
- all big technology companies become Al-first

2021-

AI becomes necessary

> "You'll not be replaced by AI, but by humans who know how to use AI"

> > (Sun, Chief Al Scientist of Appier, 2018)

ML for Future AI

Building AI as a Service

(yes, we are hiring!!)

Human Knowledge	System Engineering	Data Technology
•		ML and any other
faster with little data	· · · · · · · · · · · · · · · · · · ·	tools that can be
and little ML	ML QA testing, etc.	helpful

Hsuan-Tien Lin (Appier/NTU)

Modern AI Trends

as User Interface	as Core Components	as Business Consultant
e.g. Appier AIQUA platform	e.g. Appier CrossX for EC marketing	e.g. Appier Aixon platform
 reach users better via friendly push notification 	 personalized rec- ommendation user segmentation 	 valuable user prediction user interest visualization

Needs of ML for Future AI

more creative	more explainable	more interactive
win human <mark>respect</mark>	win human trust	win human <mark>heart</mark>
e.g. Appier's 2018 work on design matching clothes (Shih et al., AAAI 2018)	e.g. my students' work on automatic bridge bidding (Yeh et al., IEE ToG 2018)	e.g. my student's work (w/ DeepQ) on efficient disease diagonsis (Peng et al., NIPS 2018)

Summary

- ML for (Modern) AI: tools + human knowledge ⇒ easy-to-use application
- ML Research for Modern AI: need to be more open-minded —in methodology, in collaboration, in KPI
- ML for Future AI: crucial to be 'human-centric'

Thank you! Questions?