Machine Learning Techniques (機器學習技法)

Lecture 15: Matrix Factorization Hsuan-Tien Lin (林軒田) htlin@csie.ntu.edu.tw

Department of Computer Science & Information Engineering

National Taiwan University (國立台灣大學資訊工程系)

Roadmap

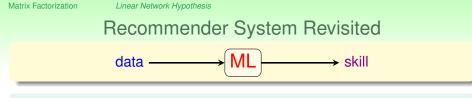
- Embedding Numerous Features: Kernel Models
- 2 Combining Predictive Features: Aggregation Models
- Oistilling Implicit Features: Extraction Models

Lecture 14: Radial Basis Function Network

linear aggregation of distance-based similarities using *k*-Means clustering for prototype finding

Lecture 15: Matrix Factorization

- Linear Network Hypothesis
- Basic Matrix Factorization
- Stochastic Gradient Descent
- Summary of Extraction Models



- data: how 'many users' have rated 'some movies'
- skill: predict how a user would rate an unrated movie

A Hot Problem

- competition held by Netflix in 2006
 - 100,480,507 ratings that 480,189 users gave to 17,770 movies
 - 10% improvement = 1 million dollar prize
- data \mathcal{D}_m for *m*-th movie:

 $\{(\tilde{\mathbf{x}}_n = (n), y_n = r_{nm}): \text{ user } n \text{ rated movie } m\}$

—abstract feature $\tilde{\mathbf{x}}_n = (\mathbf{n})$

how to learn our preferences from data?

Hsuan-Tien Lin (NTU CSIE)

Binary Vector Encoding of Categorical Feature

 $\tilde{\mathbf{x}}_n = (n)$: user IDs, such as 1126, 5566, 6211, ... —called **categorical** features

- categorical features, e.g.
 - IDs
 - blood type: A, B, AB, O
 - programming languages: C, C++, Java, Python, ...
- many ML models operate on numerical features
 - linear models
 - extended linear models such as NNet
 - -except for decision trees
- need: encoding (transform) from categorical to numerical

binary vector encoding:

$$A = [1 \ 0 \ 0 \ 0]^T, B = [0 \ 1 \ 0 \ 0]^T, AB = [0 \ 0 \ 1 \ 0]^T, O = [0 \ 0 \ 0 \ 1]^T$$

Hsuan-Tien Lin (NTU CSIE)

Feature Extraction from Encoded Vector encoded data \mathcal{D}_m for *m*-th movie:

 $\left\{ (\mathbf{x}_n = \text{BinaryVectorEncoding}(n), y_n = r_{nm}): \text{ user } n \text{ rated movie } m \right\}$

or, joint data $\ensuremath{\mathcal{D}}$

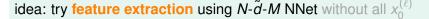
Хı

X2

X3

X٨

$$\left\{ (\mathbf{x}_n = \mathsf{BinaryVectorEncoding}(n), \mathbf{y}_n = [r_{n1} ? ? r_{n4} r_{n5} \dots r_{nM}]^T \right\}$$



W⁽¹⁾

tanh

tanh

is tanh necessary? :-)

Hsuan-Tien Lin (NTU CSIE)

 $\mathbf{X} =$

Machine Learning Techniques

 $W_{im}^{(2)}$

 $\approx y_1$

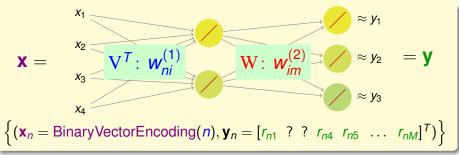
 $\approx y_2$

 $\approx y_3$

= **y**

Linear Network Hypothesis

'Linear Network' Hypothesis



- rename: V^T for $\begin{bmatrix} w_{ni}^{(1)} \end{bmatrix}$ and W for $\begin{bmatrix} w_{im}^{(2)} \end{bmatrix}$
- hypothesis: $h(\mathbf{x}) = \mathbf{W}^T \mathbf{V} \mathbf{x}$
- per-user output: $\mathbf{h}(\mathbf{x}_n) = \mathbf{W}^T \mathbf{v}_n$, where \mathbf{v}_n is *n*-th column of V

linear network for recommender system: learn V and W

Hsuan-Tien Lin (NTU CSIE)

For *N* users, *M* movies, and \tilde{d} 'features', how many variables need to be used to specify a linear network hypothesis $h(\mathbf{x}) = \mathbf{W}^T \mathbf{V} \mathbf{x}$?

$$N + M + \tilde{d} N \cdot M \cdot \tilde{d}$$

$$\mathbf{3} (N+M) \cdot \tilde{d}$$

$$(N \cdot M) + \tilde{d}$$

For *N* users, *M* movies, and \tilde{d} 'features', how many variables need to be used to specify a linear network hypothesis $h(\mathbf{x}) = \mathbf{W}^T \mathbf{V} \mathbf{x}$?

$$1 N + M + \hat{c}$$

$$\mathbf{3} (N+M) \cdot \tilde{d}$$

$$(N \cdot M) + \tilde{d}$$

Reference Answer: (3)

simply $N \cdot \tilde{d}$ for V^T and $\tilde{d} \cdot M$ for W

Matrix Factorization

Basic Matrix Factorization

Linear Network: Linear Model Per Movie

linear network:

$$\mathbf{h}(\mathbf{x}) = \mathbf{W}^{\mathsf{T}} \underbrace{\mathbf{V} \mathbf{x}}_{\mathbf{\Phi}(\mathbf{x})}$$

-for *m*-th movie, just linear model $h_m(\mathbf{x}) = \mathbf{w}_m^T \mathbf{\Phi}(\mathbf{x})$ subject to shared transform $\mathbf{\Phi}$

• for every \mathcal{D}_m , want $r_{nm} = y_n \approx \mathbf{W}_m^T \mathbf{v}_n$

• E_{in} over all \mathcal{D}_m with squared error measure:

$$E_{\text{in}}(\{\mathbf{w}_m\},\{\mathbf{v}_n\}) = \frac{1}{\sum_{m=1}^M |\mathcal{D}_m|} \sum_{\text{user } n \text{ rated movie } m} \left(r_{nm} - \mathbf{w}_m^T \mathbf{v}_n\right)^2$$

linear network: transform and linear modelS jointly learned from all \mathcal{D}_m

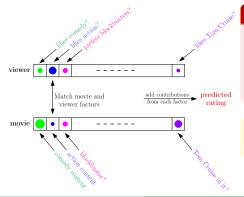
Hsuan-Tien Lin (NTU CSIE)

Basic Matrix Factorization

Matrix Factorization

$$r_{nm} \approx \mathbf{w}_m^T \mathbf{v}_n = \mathbf{v}_n^T \mathbf{w}_m \iff \mathbf{R} \approx \mathbf{V}^T \mathbf{W}$$

R	movie ₁	movie ₂	 movie _M	_	\mathbf{V}^{T}				-	
user ₁	100	80	 ?	-	$-\mathbf{v}_{1}^{T}-$					
user ₂	?	70	 90	\approx	$-\mathbf{v}_{2}^{\dagger}-$	W	w ₁	W ₂		W _M
user _N	?	60	 0	-	$-\mathbf{v}_{N}^{T}-$					



Matrix Factorization Model

learning:

known rating

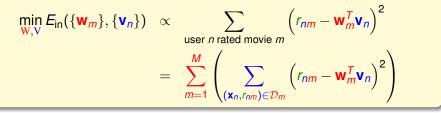
- \rightarrow learned factors \mathbf{v}_n and \mathbf{w}_m
- \rightarrow unknown rating prediction

similar modeling can be used for other abstract features

Hsuan-Tien Lin (NTU CSIE)

Basic Matrix Factorization

Matrix Factorization Learning



- two sets of variables: can consider alternating minimization, remember? :-)
- when \mathbf{v}_n fixed, minimizing $\mathbf{w}_m \equiv$ minimize E_{in} within \mathcal{D}_m —simply per-movie (per- \mathcal{D}_m) linear regression without w_0
- when \mathbf{w}_m fixed, minimizing \mathbf{v}_n ?
 - —per-user linear regression without v_0

by symmetry between users/movies

called alternating least squares algorithm

Hsuan-Tien Lin (NTU CSIE)

Basic Matrix Factorization

Alternating Least Squares

Alternating Least Squares

- 1 initialize \tilde{d} dimension vectors $\{\mathbf{w}_m\}, \{\mathbf{v}_n\}$
- 2 alternating optimization of E_{in}: repeatedly
 - 1 optimize $\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_M$:

update \mathbf{w}_m by *m*-th-movie linear regression on $\{(\mathbf{v}_n, r_{nm})\}$

2 optimize $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_N$:

update \mathbf{v}_n by *n*-th-user linear regression on $\{(\mathbf{w}_m, r_{nm})\}$

until converge

- initialize: usually just randomly
- converge:

guaranteed as Ein decreases during alternating minimization

alternating least squares:

the 'tango' dance between users/movies

Hsuan-Tien Lin (NTU CSIE)

Linear Autoencoder versus Matrix Factorization

Matrix Factorization
$\mathbf{R} \approx \mathbf{V}^{T} \mathbf{W}$
 motivation: <i>N</i>-<i>d</i>-<i>M</i> linear NNet
 error measure: squared on known r_{nm}
 solution: local optimal via alternating least squares
 usefulness: extract hidden user/movie features

linear autoencoder \equiv special matrix factorization of complete X

How many least squares problems does the alternating least squares algorithm needs to solve in one iteration of alternation?

- 1 number of movies M
- 2 number of users N
- **③** *M* + *N*
- $4 M \cdot N$

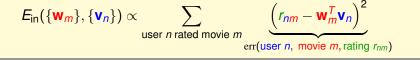
How many least squares problems does the alternating least squares algorithm needs to solve in one iteration of alternation?

- number of movies M
- 2 number of users N
- **③** *M* + *N*
- ④ M · N

Reference Answer: (3)

simply M per-movie problems and N per-user problems

Another Possibility: Stochastic Gradient Descent



SGD: randomly pick **one example** within the \sum & update with **gradient to per-example** err, **remember? :-)**

- 'efficient' per iteration
- simple to implement
- easily extends to other err

next: SGD for matrix factorization

Gradient of Per-Example Error Function err(user *n*, movie *m*, rating r_{nm}) = $(r_{nm} - \mathbf{w}_m^T \mathbf{v}_n)^2$

$ abla_{\mathbf{v}_{1126}}$	$err(user n, movie m, rating r_{nm}) = 0$ unless $n = 1126$
$ abla_{\mathbf{w}_{6211}}$	$err(user n, movie m, rating r_{nm}) = 0$ unless $m = 6211$
$ abla_{\mathbf{v}_n}$	$\operatorname{err}(\operatorname{user} n, \operatorname{movie} m, \operatorname{rating} r_{nm}) = -2\left(r_{nm} - \mathbf{w}_m^T \mathbf{v}_n\right) \mathbf{w}_m$
$ abla_{\mathbf{w}_m}$	$\operatorname{err}(\operatorname{user} n, \operatorname{movie} m, \operatorname{rating} r_{nm}) = -2 \left(r_{nm} - \mathbf{w}_m^T \mathbf{v}_n \right) \mathbf{v}_n$

per-example gradient $\propto -(residual)(the other feature vector)$

Stochastic Gradient Descent

SGD for Matrix Factorization

SGD for Matrix Factorization

initialize \tilde{d} dimension vectors $\{\mathbf{w}_m\}, \{\mathbf{v}_n\}$ randomly for t = 0, 1, ..., T

- **1** randomly pick (n, m) within all known r_{nm}
- **2** calculate residual $\tilde{r}_{nm} = (r_{nm} \mathbf{w}_m^T \mathbf{v}_n)$
- SGD-update:

$$\mathbf{v}_{n}^{new} \leftarrow \mathbf{v}_{n}^{old} + \eta \cdot \tilde{\mathbf{r}}_{nm} \mathbf{w}_{m}^{old}$$

$$\mathbf{w}_{m}^{new} \leftarrow \mathbf{w}_{m}^{old} + \eta \cdot \tilde{\mathbf{r}}_{nm} \mathbf{v}_{n}^{old}$$

SGD: perhaps most popular large-scale matrix factorization algorithm

SGD for Matrix Factorization in Practice

KDDCup 2011 Track 1: World Champion Solution by NTU

- specialty of data (application need): per-user training ratings earlier than test ratings in time
- training/test mismatch: typical sampling bias, remember? :-)
- want: emphasize latter examples
- last *T*' iterations of SGD: only those *T*' examples considered —learned {w_m}, {v_n} favoring those
- our idea: time-deterministic &GD that visits latter examples last
 —consistent improvements of test performance

if you **understand** the behavior of techniques, easier to **modify** for your real-world use

If all \mathbf{w}_m and \mathbf{v}_n are initialized to the **0** vector, what will NOT happen in SGD for matrix factorization?

- **1** all \mathbf{w}_m are always **0**
- **2** all \mathbf{v}_n are always **0**
- **3** every residual \tilde{r}_{nm} = the original rating r_{nm}
- 4 Ein decreases after each SGD update

If all \mathbf{w}_m and \mathbf{v}_n are initialized to the **0** vector, what will NOT happen in SGD for matrix factorization?

- **1** all \mathbf{w}_m are always **0**
- 2 all v_n are always 0
- **3** every residual \tilde{r}_{nm} = the original rating r_{nm}
- E_{in} decreases after each SGD update

Reference Answer: (4)

The **0** feature vectors provides a per-example gradient of **0** for every example. So E_{in} cannot be further decreased.

Map of Extraction Models

extraction models: feature transform Φ as hidden variables in addition to linear model

Adaptive/Gradient B					
hypotheses g_t ; weight	ļ				
Neural Network/ Deep Learning	RBF Network	Matrix Factorization			
weights $w_{ij}^{(\ell)}$; weights $w_{ij}^{(L)}$	RBF centers μ_m ; weights β_m	user features v_n ; movie features w_m			
	k Nearest Neighbor				
	x _n -neighbor RBF; weights <i>y</i> _n]			
ex	extraction models: a rich fa				

Hsuan-Tien Lin (NTU CSIE)

Matrix Factorization

Summary of Extraction Models

Map of Extraction Techniques

Adaptive/Gradient Boosting

functional gradient descent

Neural Network/ Deep Learning	RBF Network	Matrix Factorization
SGD (backprop)		SGD alternating leastSQR
autoencoder	k-means clustering	

k Nearest Neighbor

lazy learning :-)

extraction techniques: quite diverse

Hsuan-Tien Lin (NTU CSIE)

Pros and Cons of Extraction Models

Neural Network/ Deep Learning	RBF Network	Matrix Factorization

Pros

- 'easy': reduces human burden in designing features
- powerful: if enough hidden variables considered

Cons

- 'hard':
 - **non-convex** optimization problems in general
- overfitting:

needs proper regularization/validation

be careful when applying extraction models

Which of the following extraction model extracts Gaussian centers by *k*-means and aggregate the Gaussians linearly?

- RBF Network
- 2 Deep Learning
- 3 Adaptive Boosting
- 4 Matrix Factorization

Which of the following extraction model extracts Gaussian centers by *k*-means and aggregate the Gaussians linearly?

- RBF Network
- 2 Deep Learning
- 3 Adaptive Boosting
- 4 Matrix Factorization

Reference Answer: (1)

Congratulations on being an expert in extraction models! :-)

Summary

- Embedding Numerous Features: Kernel Models
- 2 Combining Predictive Features: Aggregation Models
- Oistilling Implicit Features: Extraction Models

Lecture 15: Matrix Factorization

powerful thus need careful use

next: closing remarks of techniques