
Machine Learning Techniques
(機器學習技法)

Lecture 15: Matrix Factorization
Hsuan-Tien Lin (林軒田)

htlin@csie.ntu.edu.tw

Department of Computer Science
& Information Engineering

National Taiwan University
(國立台灣大學資訊工程系)

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 0/22

htlin@csie.ntu.edu.tw

Matrix Factorization

Roadmap

1 Embedding Numerous Features: Kernel Models
2 Combining Predictive Features: Aggregation Models
3 Distilling Implicit Features: Extraction Models

Lecture 14: Radial Basis Function Network
linear aggregation of distance-based similarities

using k -Means clustering for prototype finding

Lecture 15: Matrix Factorization
Linear Network Hypothesis
Basic Matrix Factorization
Stochastic Gradient Descent
Summary of Extraction Models

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 1/22

Matrix Factorization Linear Network Hypothesis

Recommender System Revisited

data ML skill

• data: how ‘many users’ have rated ‘some movies’
• skill: predict how a user would rate an unrated movie

A Hot Problem
• competition held by Netflix in 2006

• 100,480,507 ratings that 480,189 users gave to 17,770 movies
• 10% improvement = 1 million dollar prize

• data Dm for m-th movie:
{(x̃n = (n), yn = rnm) : user n rated movie m}

—abstract feature x̃n = (n)

how to learn our preferences from data?

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 2/22

Matrix Factorization Linear Network Hypothesis

Binary Vector Encoding of Categorical Feature
x̃n = (n): user IDs, such as 1126, 5566, 6211, . . .

—called categorical features

• categorical features, e.g.
• IDs
• blood type: A, B, AB, O
• programming languages: C, C++, Java, Python, . . .

• many ML models operate on numerical features
• linear models
• extended linear models such as NNet

—except for decision trees
• need: encoding (transform) from categorical to numerical

binary vector encoding:

A = [1 0 0 0]T , B = [0 1 0 0]T ,
AB = [0 0 1 0]T , O = [0 0 0 1]T

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 3/22

Matrix Factorization Linear Network Hypothesis

Feature Extraction from Encoded Vector
encoded data Dm for m-th movie:{

(xn = BinaryVectorEncoding(n), yn = rnm) : user n rated movie m
}

or, joint data D{
(xn = BinaryVectorEncoding(n),yn = [rn1 ? ? rn4 rn5 . . . rnM]T)

}
idea: try feature extraction using N-d̃-M NNet without all x (`)

0
x1

x2

x3

x4

x =

tanh

tanh

≈ y1

≈ y2

≈ y3

= yw (1)
ni w (2)

im

is tanh necessary? :-)

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 4/22

Matrix Factorization Linear Network Hypothesis

‘Linear Network’ Hypothesis
x1

x2

x3

x4

x =

≈ y1

≈ y2

≈ y3

= yVT : w (1)
ni W : w (2)

im

{
(xn = BinaryVectorEncoding(n),yn = [rn1 ? ? rn4 rn5 . . . rnM]T)

}
• rename: VT for

[
w (1)

ni

]
and W for

[
w (2)

im

]
• hypothesis: h(x) = WT Vx
• per-user output: h(xn) = WT vn, where vn is n-th column of V

linear network for recommender system:
learn V and W

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 5/22

Matrix Factorization Linear Network Hypothesis

Fun Time

For N users, M movies, and d̃ ‘features’, how many variables need to
be used to specify a linear network hypothesis h(x) = WT Vx?

1 N + M + d̃
2 N ·M · d̃
3 (N + M) · d̃
4 (N ·M) + d̃

Reference Answer: 3

simply N · d̃ for VT and d̃ ·M for W

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 6/22

Matrix Factorization Linear Network Hypothesis

Fun Time

For N users, M movies, and d̃ ‘features’, how many variables need to
be used to specify a linear network hypothesis h(x) = WT Vx?

1 N + M + d̃
2 N ·M · d̃
3 (N + M) · d̃
4 (N ·M) + d̃

Reference Answer: 3

simply N · d̃ for VT and d̃ ·M for W

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 6/22

Matrix Factorization Basic Matrix Factorization

Linear Network: Linear Model Per Movie
linear network:

h(x) = WT Vx︸︷︷︸
Φ(x)

—for m-th movie, just linear model hm(x) = wT
mΦ(x)

subject to shared transform Φ

• for every Dm, want rnm = yn ≈ wT
mvn

• Ein over all Dm with squared error measure:

Ein({wm}, {vn}) =
1∑M

m=1 |Dm|

∑
user n rated movie m

(
rnm −wT

mvn

)
2

linear network: transform and linear modelS
jointly learned from all Dm

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 7/22

Matrix Factorization Basic Matrix Factorization

Matrix Factorization
rnm ≈ wT

mvn = vT
n wm ⇐⇒ R ≈ VT W

R movie1 movie2 · · · movieM

user1 100 80 · · · ?
user2 ? 70 · · · 90
· · · · · · · · · · · · · · ·

userN ? 60 · · · 0

≈

VT

—vT
1 —

—vT
2 —
· · ·

—vT
N—

∣∣ ∣∣ ∣∣
W w1 w2 · · · wM∣∣ ∣∣ ∣∣

Match movie and
viewer factors

predicted
rating

comedy content

action content

blockbuster?

Tom
Cruise in it?

like
s To

m
Crui

se?

pre
fer

s blo
ckb

ust
ers

?

like
s act

ion
?

like
s com

edy
?

movie

viewer

add contributions
from each factor

Matrix Factorization Model
learning:

→

known rating
→ learned factors vn and wm
→ unknown rating prediction

similar modeling can be used for
other abstract features

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 8/22

Matrix Factorization Basic Matrix Factorization

Matrix Factorization Learning

min
W,V

Ein({wm}, {vn}) ∝
∑

user n rated movie m

(
rnm −wT

mvn

)2

=
M∑

m=1

 ∑
(xn,rnm)∈Dm

(
rnm −wT

mvn

)2

• two sets of variables:

can consider alternating minimization, remember? :-)
• when vn fixed, minimizing wm ≡ minimize Ein within Dm

—simply per-movie (per-Dm) linear regression without w0

• when wm fixed, minimizing vn?
—per-user linear regression without v0

by symmetry between users/movies

called alternating least squares algorithm

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 9/22

Matrix Factorization Basic Matrix Factorization

Alternating Least Squares

Alternating Least Squares

1 initialize d̃ dimension vectors {wm}, {vn}
2 alternating optimization of Ein: repeatedly

1 optimize w1,w2, . . . ,wM :
update wm by m-th-movie linear regression on {(vn, rnm)}

2 optimize v1,v2, . . . ,vN :
update vn by n-th-user linear regression on {(wm, rnm)}

until converge

• initialize: usually just randomly
• converge:

guaranteed as Ein decreases during alternating minimization

alternating least squares:
the ‘tango’ dance between users/movies

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 10/22

Matrix Factorization Basic Matrix Factorization

Linear Autoencoder versus Matrix Factorization

Linear Autoencoder
X ≈W

(
WT X

)
• motivation:

special d-d̃-d linear NNet
• error measure:

squared on all xni

• solution: global optimal at
eigenvectors of XT X

• usefulness: extract
dimension-reduced features

Matrix Factorization
R ≈ VT W

• motivation:
N-d̃-M linear NNet

• error measure:
squared on known rnm

• solution: local optimal via
alternating least squares

• usefulness: extract
hidden user/movie features

linear autoencoder
≡ special matrix factorization of complete X

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 11/22

Matrix Factorization Basic Matrix Factorization

Fun Time

How many least squares problems does the alternating least squares
algorithm needs to solve in one iteration of alternation?

1 number of movies M
2 number of users N
3 M + N
4 M · N

Reference Answer: 3

simply M per-movie problems and N per-user
problems

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 12/22

Matrix Factorization Basic Matrix Factorization

Fun Time

How many least squares problems does the alternating least squares
algorithm needs to solve in one iteration of alternation?

1 number of movies M
2 number of users N
3 M + N
4 M · N

Reference Answer: 3

simply M per-movie problems and N per-user
problems

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 12/22

Matrix Factorization Stochastic Gradient Descent

Another Possibility: Stochastic Gradient Descent

Ein({wm}, {vn}) ∝
∑

user n rated movie m

(
rnm −wT

mvn

)2

︸ ︷︷ ︸
err(user n, movie m, rating rnm)

SGD: randomly pick one example within the
∑

&
update with gradient to per-example err, remember? :-)

• ‘efficient’ per iteration
• simple to implement
• easily extends to other err

next: SGD for matrix factorization

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 13/22

Matrix Factorization Stochastic Gradient Descent

Gradient of Per-Example Error Function

err(user n, movie m, rating rnm) =
(

rnm −wT
mvn

)
2

∇v1126 err(user n, movie m, rating rnm) = 0 unless n = 1126
∇w6211 err(user n, movie m, rating rnm) = 0 unless m = 6211

∇vn err(user n, movie m, rating rnm) = − 2
(

rnm −wT
mvn

)
wm

∇wm err(user n, movie m, rating rnm) = −2
(

rnm −wT
mvn

)
vn

per-example gradient
∝ −(residual)(the other feature vector)

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 14/22

Matrix Factorization Stochastic Gradient Descent

SGD for Matrix Factorization

SGD for Matrix Factorization
initialize d̃ dimension vectors {wm}, {vn} randomly
for t = 0,1, . . . ,T

1 randomly pick (n,m) within all known rnm

2 calculate residual r̃nm =
(
rnm −wT

mvn
)

3 SGD-update:

vnew
n ← vold

n + η · r̃nmwold
m

wnew
m ← wold

m + η · r̃nmvold
n

SGD: perhaps most popular large-scale
matrix factorization algorithm

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 15/22

Matrix Factorization Stochastic Gradient Descent

SGD for Matrix Factorization in Practice

KDDCup 2011 Track 1: World Champion Solution by NTU
• specialty of data (application need):

per-user training ratings earlier than test ratings in time
• training/test mismatch: typical sampling bias, remember? :-)

• want: emphasize latter examples
• last T ′ iterations of SGD: only those T ′ examples considered

—learned {wm}, {vn} favoring those
• our idea: time-deterministic ��SSSGD that visits latter examples last

—consistent improvements of test performance

if you understand the behavior of techniques,
easier to modify for your real-world use

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 16/22

Matrix Factorization Stochastic Gradient Descent

Fun Time

If all wm and vn are initialized to the 0 vector, what will NOT happen in
SGD for matrix factorization?

1 all wm are always 0
2 all vn are always 0
3 every residual r̃nm = the original rating rnm

4 Ein decreases after each SGD update

Reference Answer: 4

The 0 feature vectors provides a per-example
gradient of 0 for every example. So Ein cannot
be further decreased.

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 17/22

Matrix Factorization Stochastic Gradient Descent

Fun Time

If all wm and vn are initialized to the 0 vector, what will NOT happen in
SGD for matrix factorization?

1 all wm are always 0
2 all vn are always 0
3 every residual r̃nm = the original rating rnm

4 Ein decreases after each SGD update

Reference Answer: 4

The 0 feature vectors provides a per-example
gradient of 0 for every example. So Ein cannot
be further decreased.

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 17/22

Matrix Factorization Summary of Extraction Models

Map of Extraction Models
extraction models: feature transform Φ as hidden variables

in addition to linear model

Adaptive/Gradient Boosting
hypotheses gt ; weights αt

Neural Network/
Deep Learning

weights w (`)
ij ;

weights w (L)
ij

RBF Network

RBF centers µm;

weights βm

k Nearest Neighbor
xn-neighbor RBF;
weights yn

Matrix Factorization

user features vn;

movie features wm

extraction models: a rich family

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 18/22

Matrix Factorization Summary of Extraction Models

Map of Extraction Techniques

Adaptive/Gradient Boosting
functional gradient descent

Neural Network/
Deep Learning
SGD (backprop)

autoencoder

RBF Network

k -means clustering

k Nearest Neighbor
lazy learning :-)

Matrix Factorization

SGD
alternating leastSQR

extraction techniques: quite diverse

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 19/22

Matrix Factorization Summary of Extraction Models

Pros and Cons of Extraction Models

Neural Network/
Deep Learning

RBF Network Matrix Factorization

Pros
• ‘easy’:

reduces human burden in
designing features

• powerful:
if enough hidden variables
considered

Cons
• ‘hard’:

non-convex optimization
problems in general

• overfitting:
needs proper
regularization/validation

be careful when applying extraction models

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 20/22

Matrix Factorization Summary of Extraction Models

Fun Time

Which of the following extraction model extracts Gaussian centers by
k -means and aggregate the Gaussians linearly?

1 RBF Network
2 Deep Learning
3 Adaptive Boosting
4 Matrix Factorization

Reference Answer: 1

Congratulations on being an expert in
extraction models! :-)

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 21/22

Matrix Factorization Summary of Extraction Models

Fun Time

Which of the following extraction model extracts Gaussian centers by
k -means and aggregate the Gaussians linearly?

1 RBF Network
2 Deep Learning
3 Adaptive Boosting
4 Matrix Factorization

Reference Answer: 1

Congratulations on being an expert in
extraction models! :-)

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 21/22

Matrix Factorization Summary of Extraction Models

Summary

1 Embedding Numerous Features: Kernel Models
2 Combining Predictive Features: Aggregation Models
3 Distilling Implicit Features: Extraction Models

Lecture 15: Matrix Factorization
Linear Network Hypothesis

feature extraction from binary vector encoding
Basic Matrix Factorization

alternating least squares between user/movie
Stochastic Gradient Descent

efficient and easily modified for practical use
Summary of Extraction Models

powerful thus need careful use

• next: closing remarks of techniques

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 22/22

	Matrix Factorization
	Linear Network Hypothesis
	Basic Matrix Factorization
	Stochastic Gradient Descent
	Summary of Extraction Models

