Machine Learning Techniques (機器學習技法)

Lecture 10: Random Forest Hsuan-Tien Lin (林軒田) htlin@csie.ntu.edu.tw

Department of Computer Science & Information Engineering

National Taiwan University (國立台灣大學資訊工程系)

Roadmap

- Embedding Numerous Features: Kernel Models
- 2 Combining Predictive Features: Aggregation Models

Lecture 9: Decision Tree

recursive branching (purification) for conditional aggregation of constant hypotheses

Lecture 10: Random Forest

- Random Forest Algorithm
- Out-Of-Bag Estimate
- Feature Selection
- Random Forest in Action

Oistilling Implicit Features: Extraction Models

Random Forest

Recall: Bagging and Decision Tree

Bagging

function $Bag(\mathcal{D}, \mathcal{A})$ function $\mathsf{DTree}(\mathcal{D})$ if termination return base g_t For t = 1, 2, ..., Telse **1** request size-N' data $\tilde{\mathcal{D}}_t$ by **1** learn $b(\mathbf{x})$ and split \mathcal{D} to bootstrapping with \mathcal{D} \mathcal{D}_c by $b(\mathbf{x})$ 2 obtain base q_t by $\mathcal{A}(\tilde{\mathcal{D}}_t)$ 2 build $G_c \leftarrow \text{DTree}(\mathcal{D}_c)$ return $G = \text{Uniform}(\{g_t\})$ **3** return $G(\mathbf{x}) =$ $\sum_{i=1}^{C} \llbracket b(\mathbf{x}) = c \rrbracket \mathbf{G}_{c}(\mathbf{x})$ –reduces variance —large variance especially if fully-grown by voting/averaging

putting them together?
(i.e. aggregation of aggregation :-))

Hsuan-Tien Lin (NTU CSIE)

Machine Learning Techniques

Decision Tree

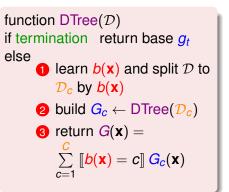
Random Forest (RF)

random forest (RF) = bagging + fully-grown C&RT decision tree

function RandomForest(D) For t = 1, 2, ..., T

- 1 request size-*N'* data $\tilde{\mathcal{D}}_t$ by bootstrapping with \mathcal{D}
- **2** obtain tree g_t by DTree $(\tilde{\mathcal{D}}_t)$

return $G = \text{Uniform}(\{g_t\})$



- highly parallel/efficient to learn
- inherit pros of C&RT
- eliminate cons of fully-grown tree

Random Forest Algorithm

Diversifying by Feature Projection recall: data randomness for diversity in bagging randomly sample N' examples from D

another possibility for diversity:

randomly sample d' features from x

- when sampling index $i_1, i_2, \dots, i_{d'}$: $\boldsymbol{\Phi}(\mathbf{x}) = (\mathbf{x}_{i_1}, \mathbf{x}_{i_2}, \dots, \mathbf{x}_{i_{d'}})$
- $\mathcal{Z} \in \mathbb{R}^{d'}$: a random subspace of $\mathcal{X} \in \mathbb{R}^{d}$
- often d' « d, efficient for large d —can be generally applied on other models
- original RF re-sample new subspace for each b(x) in C&RT

RF = bagging + random-subspace C&RT

Random Forest Algorithm

Diversifying by Feature Expansion

randomly **sample** d' **features** from **x**: $\Phi(\mathbf{x}) = P \cdot \mathbf{x}$ with row *i* of P sampled randomly \in natural basis

more **powerful** features for **diversity**: row *i* other than natural basis

- projection (combination) with random row \mathbf{p}_i of P: $\phi_i(\mathbf{x}) = \mathbf{p}_i^T \mathbf{x}$
- often consider low-dimensional projection: only d["] non-zero components in p_i
- includes random subspace as special case:
 d["] = 1 and p_i ∈ natural basis
- original RF consider d' random low-dimensional projections for each b(x) in C&RT

RF = bagging + random-**combination** C&RT —randomness everywhere!

Hsuan-Tien Lin (NTU CSIE)

Fun Time

Within RF that contains random-combination C&RT trees, which of the following hypothesis is equivalent to each branching function $b(\mathbf{x})$ within the tree?

- a constant
- 2 a decision stump
- 3 a perceptron
- 4 none of the other choices

Fun Time

Within RF that contains random-combination C&RT trees, which of the following hypothesis is equivalent to each branching function $b(\mathbf{x})$ within the tree?

- 1 a constant
- 2 a decision stump
- 3 a perceptron
- 4 none of the other choices

Reference Answer: (3)

In each $b(\mathbf{x})$, the input vector \mathbf{x} is first projected by a random vector \mathbf{v} and then thresholded to make a binary decision, which is exactly what a perceptron does.

Bagging Revisited

Bagging

function $Bag(\mathcal{D}, \mathcal{A})$ For t = 1, 2, ..., T

- 1 request size-N' data $\tilde{\mathcal{D}}_t$ by bootstrapping with \mathcal{D}
- **2** obtain base g_t by $\mathcal{A}(\tilde{\mathcal{D}}_t)$

return $G = \text{Uniform}(\{g_t\})$

	g 1	g 2	g 3	 g _T
$({\bf x}_1, y_1)$	$\tilde{\mathcal{D}}_1$	*	$ ilde{\mathcal{D}}_3$	$\tilde{\mathcal{D}}_{\mathcal{T}}$
(x_2, y_2)	*	*	$ ilde{\mathcal{D}}_3$	$\tilde{\mathcal{D}}_{\mathcal{T}}$
(x_3, y_3)	*	$ ilde{\mathcal{D}}_2$	*	$\tilde{\mathcal{D}}_{\mathcal{T}}$
(\mathbf{x}_N, y_N)	$ $ $\tilde{\mathcal{D}}_1$	$ ilde{\mathcal{D}}_2$	*	*

 \star in *t*-th column: not used for obtaining g_t —called **out-of-bag (OOB) examples** of g_t Random Forest

Out-Of-Bag Estimate

Number of OOB Examples OOB (in \star) \iff not sampled after N' drawings

if N' = N

- probability for (\mathbf{x}_n, y_n) to be OOB for g_t : $(1 \frac{1}{N})^N$
- if N large:

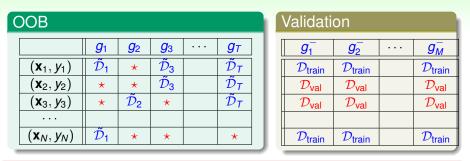
$$\left(1-\frac{1}{N}\right)^{N}=\frac{1}{\left(\frac{N}{N-1}\right)^{N}}=\frac{1}{\left(1+\frac{1}{N-1}\right)^{N}}\approx\frac{1}{e}$$

OOB size per
$$g_t \approx \frac{1}{e}N$$

Random Forest

Out-Of-Bag Estimate

OOB versus Validation



- \star like \mathcal{D}_{val} : 'enough' random examples unused during training
- use * to validate gt? easy, but rarely needed
- use \star to validate *G*? $E_{oob}(G) = \frac{1}{N} \sum_{n=1}^{N} err(y_n, G_n^-(\mathbf{x}_n))$, with G_n^- contains only trees that \mathbf{x}_n is OOB of,

such as $G_N^-(\mathbf{x}) = \text{average}(g_2, g_3, g_T)$

Eoob: self-validation of bagging/RF

Hsuan-Tien Lin (NTU CSIE)

Out-Of-Bag Estimate

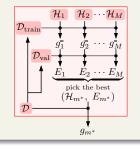
Model Selection by OOB Error

Previously: by Best E_{val}

$$g_{m^*} = \mathcal{A}_{m^*}(\mathcal{D})$$

$$m^* = \operatorname*{argmin}_{1 \le m \le M} E_m$$

$$E_m = E_{val}(\mathcal{A}_m(\mathcal{D}_{train}))$$



RF: by Best E_{oob}

$$G_{m^*} = \mathsf{RF}_{m^*}(\mathcal{D})$$

$$m^* = \underset{1 \le m \le M}{\operatorname{argmin}} E_m$$

$$E_m = E_{oob}(\mathsf{RF}_m(\mathcal{D}))$$

- use *E*_{oob} for self-validation
 —of RF parameters such as *d*"
- no re-training needed

Eoob often accurate in practice

Hsuan-Tien Lin (NTU CSIE)

Fun Time

For a data set with N = 1126, what is the probability that $(\mathbf{x}_{1126}, y_{1126})$ is not sampled after bootstrapping N' = N samples from the data set?

- 1 0.113
- 2 0.368
- 3 0.632
- **4** 0.887

Fun Time

For a data set with N = 1126, what is the probability that $(\mathbf{x}_{1126}, y_{1126})$ is not sampled after bootstrapping N' = N samples from the data set?

- 1 0.113
- 2 0.368
- **3** 0.632
- **4** 0.887

Reference Answer: (2)

The value of $(1 - \frac{1}{N})^N$ with N = 1126 is about 0.367716, which is close to $\frac{1}{e} = 0.367879$.

Feature Selection

for $\mathbf{x} = (x_1, x_2, \dots, x_d)$, want to remove

- redundant features: like keeping one of 'age' and 'full birthday'
- irrelevant features: like insurance type for cancer prediction

and only 'learn' subset-transform $\Phi(\mathbf{x}) = (x_{i_1}, x_{i_2}, x_{i_{d'}})$

with d' < d for $g(\mathbf{\Phi}(\mathbf{x}))$

advantages:

- efficiency: simpler hypothesis and shorter prediction time
- generalization: 'feature noise' removed
- interpretability

disadvantages:

- computation:
 - 'combinatorial' optimization in training
- overfit: 'combinatorial' selection
- mis-interpretability

decision tree: a rare model with built-in feature selection

Hsuan-Tien Lin (NTU CSIE)

Random Forest

Feature Selection

Feature Selection by Importance

idea: if possible to calculate

importance(i) for $i = 1, 2, \ldots, d$

then can select $i_1, i_2, \ldots, i_{d'}$ of top-d' importance

importance by linear model

$$\text{score} = \mathbf{w}^T \mathbf{x} = \sum_{i=1}^d w_i x_i$$

- intuitive estimate: importance(i) = |w_i| with some 'good' w
- getting 'good' w: learned from data
- non-linear models? often much harder

next: 'easy' feature selection in RF

Hsuan-Tien Lin (NTU CSIE)

Feature Importance by Permutation Test

idea: random test

—if feature *i* needed, 'random' values of $x_{n,i}$ degrades performance

- which random values?
 - uniform, Gaussian, ...: $P(x_i)$ changed
 - bootstrap, permutation (of {x_{n,i}}^N_{n=1}): P(x_i) approximately remained
- permutation test:

importance(i) = performance(\mathcal{D}) - performance($\mathcal{D}^{(p)}$)

with $\mathcal{D}^{(p)}$ is \mathcal{D} with $\{x_{n,i}\}$ replaced by permuted $\{x_{n,i}\}_{n=1}^{N}$

permutation test: a general statistical tool for arbitrary non-linear models like RF

Hsuan-Tien Lin (NTU CSIE)

Random Forest

Feature Importance in Original Random Forest permutation test:

importance(i) = performance(\mathcal{D}) - performance($\mathcal{D}^{(p)}$)

with $\mathcal{D}^{(p)}$ is \mathcal{D} with $\{x_{n,i}\}$ replaced by permuted $\{x_{n,i}\}_{n=1}^{N}$

- performance(D^(p)): needs re-training and validation in general
- 'escaping' validation? OOB in RF
- original RF solution: importance(*i*) = $E_{oob}(G) E_{oob}^{(p)}(G)$, where $E_{oob}^{(p)}$ comes from replacing each request of $x_{n,i}$ by a **permuted OOB** value

RF feature selection via permutation + OOB: often efficient and promising in practice

Fun Time

For RF, if the 1126-th feature within the data set is a constant 5566, what would importance(i) be?

- 3 1126
- 4 5566

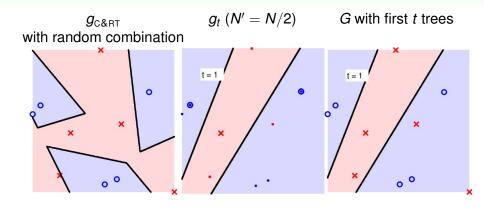
Fun Time

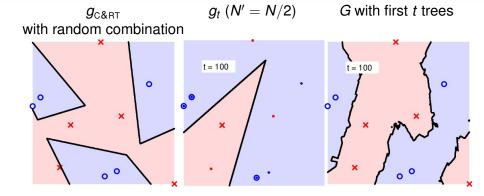
For RF, if the 1126-th feature within the data set is a constant 5566, what would importance(i) be?

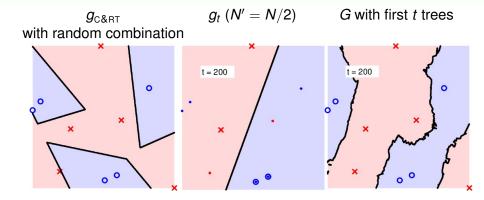
- 3 1126
- 4 5566

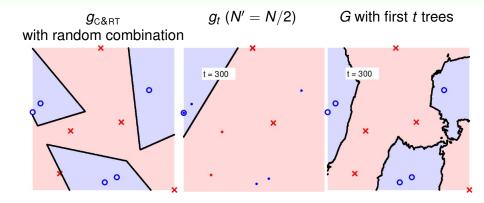
Reference Answer: (1)

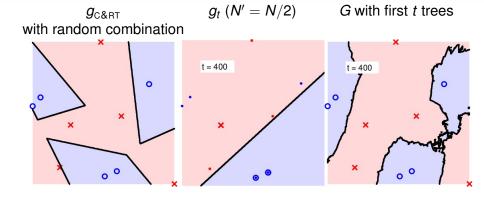
When a feature is a constant, permutation does not change its value. Then, $E_{oob}(G)$ and $E_{oob}^{(p)}(G)$ are the same, and thus importance(*i*) = 0.

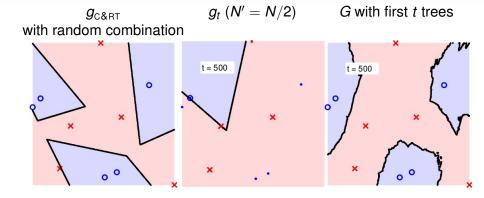


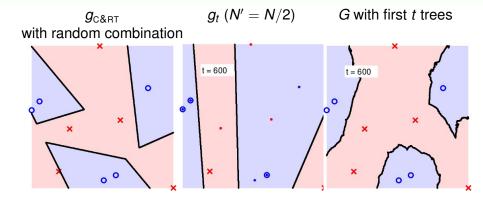


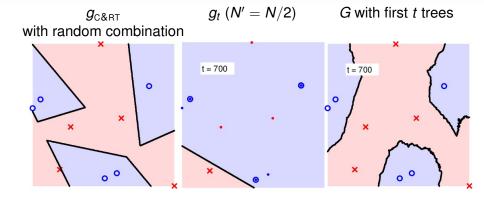


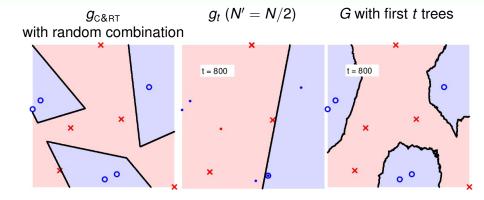


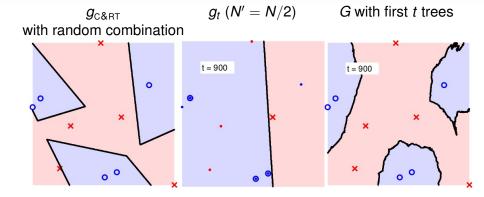


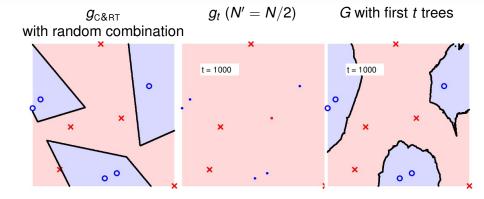








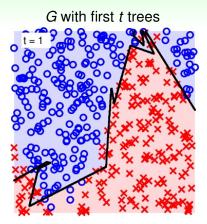


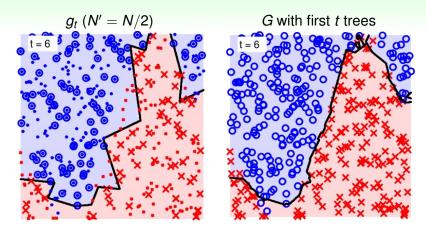


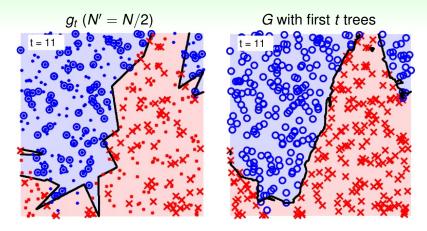
'smooth' and large-margin-like boundary with many trees

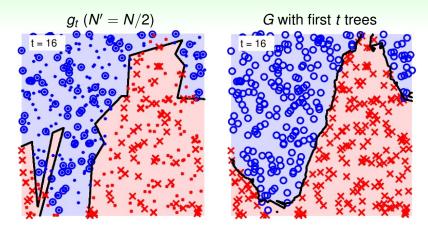
Hsuan-Tien Lin (NTU CSIE)

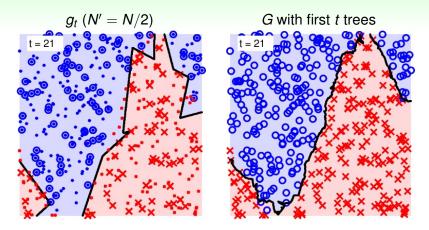
 $g_t (N' = N/2)$ t = 1











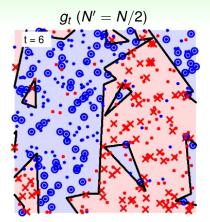
'easy yet robust' nonlinear model

Hsuan-Tien Lin (NTU CSIE)

A Complicated and Noisy Data Set

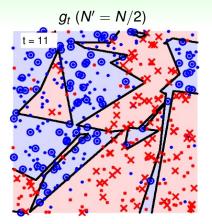
 $g_t (N' = N/2)$

A Complicated and Noisy Data Set



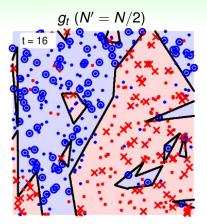
Random Forest in Action

A Complicated and Noisy Data Set

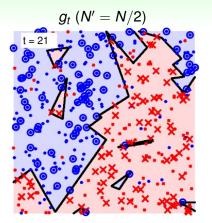


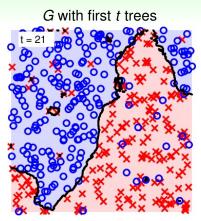
Random Forest in Action

A Complicated and Noisy Data Set



A Complicated and Noisy Data Set





noise corrected by voting

Hsuan-Tien Lin (NTU CSIE)

Random Forest in Action

How Many Trees Needed?

almost every theory: the more, the 'better' assuming good $\bar{g} = \lim_{T \to \infty} G$

Our NTU Experience

- KDDCup 2013 Track 1 (yes, NTU is world champion again! :-)): predicting author-paper relation
- *E*_{val} of thousands of trees: [0.015, 0.019] depending on seed;
 *E*_{out} of top 20 teams: [0.014, 0.019]
- decision: take 12000 trees with seed 1

cons of RF: may need lots of trees if the whole random process too unstable —should double-check stability of G to ensure enough trees

Fun Time

Which of the following is not the best use of Random Forest?

- train each tree with bootstrapped data
- **2** use E_{oob} to validate the performance
- 3 conduct feature selection with permutation test
- 4 fix the number of trees, T, to the lucky number 1126

Fun Time

Which of the following is not the best use of Random Forest?

- train each tree with bootstrapped data
- 2 use E_{oob} to validate the performance
- 3 conduct feature selection with permutation test
- 4 fix the number of trees, T, to the lucky number 1126

Reference Answer: (4)

A good value of T can depend on the nature of the data and the stability of the whole random process.

Summary

- Embedding Numerous Features: Kernel Models
- 2 Combining Predictive Features: Aggregation Models

Lecture 10: Random Forest

Random Forest Algorithm
 bag of trees on randomly projected subspaces
 Out-Of-Bag Estimate

 Self-validation with OOB examples

 Feature Selection

 permutation test for feature importance
 Random Forest in Action

'smooth' boundary with many trees

- next: boosted decision trees beyond classification
- 3 Distilling Implicit Features: Extraction Models