Machine Learning Techniques (機器學習技法)

Lecture 1: Linear Support Vector Machine

Hsuan-Tien Lin (林軒田) htlin@csie.ntu.edu.tw

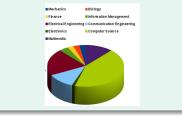
Department of Computer Science & Information Engineering

National Taiwan University (國立台灣大學資訊工程系)

Course Introduction Course History

NTU Version

- 15-17 weeks (2+ hours)
- highly-praised with English and blackboard teaching



Coursera Version

- 8 weeks of 'foundations' (previous course) + 8 weeks of 'techniques' (this course)
- Mandarin teaching to reach more audience in need
- slides teaching improved with Coursera's quiz and homework mechanisms

goal: try making Coursera version even better than NTU version

Course Design

from Foundations to Techniques

- mixture of philosophical illustrations, key theory, core algorithms, usage in practice, and hopefully jokes :-)
- three major techniques surrounding feature transforms:
 - Embedding Numerous Features: how to exploit and regularize numerous features?
 - -inspires Support Vector Machine (SVM) model
 - Combining Predictive Features: how to construct and blend predictive features?
 - -inspires Adaptive Boosting (AdaBoost) model
 - Distilling Implicit Features: how to identify and learn implicit features?
 - -inspires Deep Learning model

allows students to use ML professionally

Which of the following description of this course is true?

- the course will be taught in Taiwanese
- 2 the course will tell me the techniques that create the android Lieutenant Commander Data in Star Trek
- 8 the course will be 16 weeks long
- 4 the course will focus on three major techniques

Which of the following description of this course is true?

- the course will be taught in Taiwanese
- 2 the course will tell me the techniques that create the android Lieutenant Commander Data in Star Trek
- 8 the course will be 16 weeks long
- 4 the course will focus on three major techniques

Reference Answer: (4)

- no, my Taiwanese is unfortunately not good enough for teaching (yet)
- 2 no, although what we teach may serve as building blocks
- on, unless you have also joined the previous course
- 4 yes, let's get started!

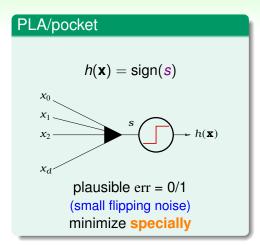
Roadmap

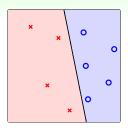
Embedding Numerous Features: Kernel Models

Lecture 1: Linear Support Vector Machine

- Course Introduction
- Large-Margin Separating Hyperplane
- Standard Large-Margin Problem
- Support Vector Machine
- Reasons behind Large-Margin Hyperplane
- 2 Combining Predictive Features: Aggregation Models
- Oistilling Implicit Features: Extraction Models

Linear Classification Revisited





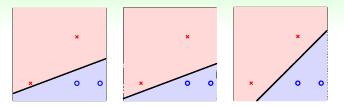
(linear separable)

linear (hyperplane) classifiers: $h(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^{\top}\mathbf{x})$

Hsuan-Tien Lin (NTU CSIE)

Large-Margin Separating Hyperplane

Which Line Is Best?



- PLA? depending on randomness
- VC bound? whichever you like!

$$E_{\text{out}}(\mathbf{w}) \leq \underbrace{E_{\text{in}}(\mathbf{w})}_{0} + \underbrace{\Omega(\mathcal{H})}_{d_{\text{VC}}=d+1}$$

You? rightmost one, possibly :-)

Hsuan-Tien Lin (NTU CSIE)

Why Rightmost Hyperplane?

informal argument

if (Gaussian-like) noise on future $\mathbf{x} \approx \mathbf{x}_n$:

 \mathbf{x}_n further from hyperplane

- \iff tolerate more noise
- \iff more robust to overfitting

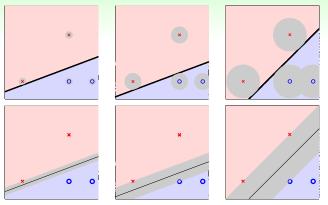
distance to closest \mathbf{x}_n

- \iff amount of noise tolerance
 - \iff robustness of hyperplane

rightmost one: more robust because of larger distance to closest x_n

Large-Margin Separating Hyperplane

Fat Hyperplane



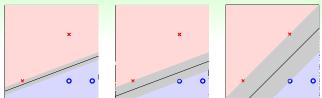
- robust separating hyperplane: fat —far from both sides of examples
- robustness \equiv **fatness**: distance to closest \mathbf{x}_n

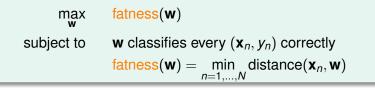
goal: find fattest separating hyperplane

Hsuan-Tien Lin (NTU CSIE)

Large-Margin Separating Hyperplane

Large-Margin Separating Hyperplane





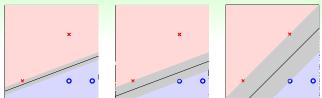
- fatness: formally called margin
- correctness: $y_n = \operatorname{sign}(\mathbf{w}^T \mathbf{x}_n)$

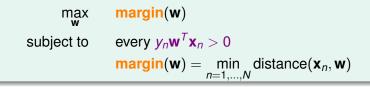
goal: find largest-margin separating hyperplane

Hsuan-Tien Lin (NTU CSIE)

Large-Margin Separating Hyperplane

Large-Margin Separating Hyperplane





- fatness: formally called margin
- correctness: $y_n = \operatorname{sign}(\mathbf{w}^T \mathbf{x}_n)$

goal: find largest-margin separating hyperplane

Hsuan-Tien Lin (NTU CSIE)

Consider two examples $(\mathbf{v}, +1)$ and $(-\mathbf{v}, -1)$ where $\mathbf{v} \in \mathbb{R}^2$ (without padding the $v_0 = 1$). Which of the following hyperplane is the largest-margin separating one for the two examples? You are highly encouraged to visualize by considering, for instance, $\mathbf{v} = (3, 2)$.

1
$$x_1 = 0$$

2 $x_2 = 0$

$$v_1x_1 + v_2x_2 = 0$$

$$4 v_2 x_1 + v_1 x_2 = 0$$

Consider two examples $(\mathbf{v}, +1)$ and $(-\mathbf{v}, -1)$ where $\mathbf{v} \in \mathbb{R}^2$ (without padding the $v_0 = 1$). Which of the following hyperplane is the largest-margin separating one for the two examples? You are highly encouraged to visualize by considering, for instance, $\mathbf{v} = (3, 2)$.

1
$$x_1 = 0$$

2
$$x_2 = 0$$

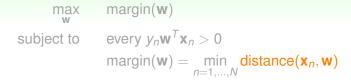
$$v_2 x_1 + v_1 x_2 = 0$$

Reference Answer: (3)

Here the largest-margin separating hyperplane (line) must be a perpendicular bisector of the line segment between \mathbf{v} and $-\mathbf{v}$. Hence \mathbf{v} is a normal vector of the largest-margin line. The result can be extended to the more general case of $\mathbf{v} \in \mathbb{R}^d$.

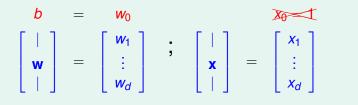
Hsuan-Tien Lin (NTU CSIE)

Linear Support Vector Machine Standard Large-Margin Problem Distance to Hyperplane: Preliminary



'shorten' **x** and **w**

distance needs w_0 and (w_1, \ldots, w_d) differently (to be derived)

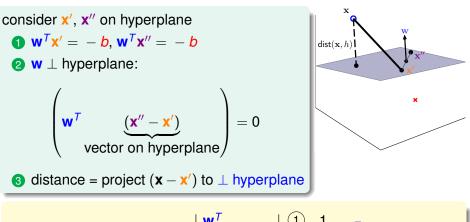


for this part:
$$h(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^T \mathbf{x} + \mathbf{b})$$

Hsuan-Tien Lin (NTU CSIE)

Standard Large-Margin Problem

Distance to Hyperplane want: distance($\mathbf{x}, \mathbf{b}, \mathbf{w}$), with hyperplane $\mathbf{w}^T \mathbf{x}' + \mathbf{b} = \mathbf{0}$



distance
$$(\mathbf{x}, \mathbf{b}, \mathbf{w}) = \left| \frac{\mathbf{w}'}{\|\mathbf{w}\|} (\mathbf{x} - \mathbf{x}') \right| \stackrel{(1)}{=} \frac{1}{\|\mathbf{w}\|} |\mathbf{w}^T \mathbf{x} + \mathbf{b}|$$

Hsuan-Tien Lin (NTU CSIE)

Standard Large-Margin Problem

Distance to Separating Hyperplane

distance
$$(\mathbf{x}, \mathbf{b}, \mathbf{w}) = \frac{1}{\|\mathbf{w}\|} |\mathbf{w}^T \mathbf{x} + \mathbf{b}|$$

• separating hyperplane: for every n

 $y_n(\mathbf{w}^T\mathbf{x}_n+b)>0$

distance to separating hyperplane:

distance
$$(\mathbf{x}_n, \mathbf{b}, \mathbf{w}) = \frac{1}{\|\mathbf{w}\|} y_n(\mathbf{w}^T \mathbf{x}_n + \mathbf{b})$$

$$\max_{\substack{b,\mathbf{w}\\b,\mathbf{w}}} \max(\mathbf{w}^{T}\mathbf{x}_{n} + \mathbf{b}) > 0$$
subject to
$$\operatorname{every} y_{n}(\mathbf{w}^{T}\mathbf{x}_{n} + \mathbf{b}) > 0$$

$$\operatorname{margin}(\mathbf{b}, \mathbf{w}) = \min_{n=1,...,N} \frac{1}{\|\mathbf{w}\|} y_{n}(\mathbf{w}^{T}\mathbf{x}_{n} + \mathbf{b})$$

Hsuan-Tien Lin (NTU CSIE)

Standard Large-Margin Problem

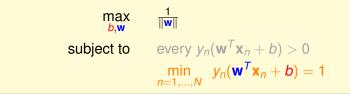
Margin of Special Separating Hyperplane

 $\max_{\substack{\boldsymbol{b}, \mathbf{w} \\ \boldsymbol{b}, \mathbf{w}}} \operatorname{margin}(\boldsymbol{b}, \mathbf{w})$ subject to $\operatorname{every} y_n(\mathbf{w}^T \mathbf{x}_n + \mathbf{b}) > 0$ $\operatorname{margin}(\boldsymbol{b}, \mathbf{w}) = \min_{n=1, \dots, N} \frac{1}{\|\mathbf{w}\|} y_n(\mathbf{w}^T \mathbf{x}_n + \mathbf{b})$

• $\mathbf{w}^T \mathbf{x} + \mathbf{b} = 0$ same as $3\mathbf{w}^T \mathbf{x} + 3\mathbf{b} = 0$: scaling does not matter

• special scaling: only consider separating (b, w) such that

$$\min_{n=1,\ldots,N} y_n(\mathbf{w}^T \mathbf{x}_n + b) = 1 \Longrightarrow \operatorname{margin}(b, \mathbf{w}) = \frac{1}{\|\mathbf{w}\|}$$



Hsuan-Tien Lin (NTU CSIE)

Standard Large-Margin Problem

Standard Large-Margin Hyperplane Problem

$$\max_{\boldsymbol{b}, \mathbf{w}} \quad \frac{1}{\|\mathbf{w}\|} \quad \text{subject to} \min_{\boldsymbol{n}=1, \dots, N} \quad \boldsymbol{y}_{\boldsymbol{n}}(\mathbf{w}^{\mathsf{T}} \mathbf{x}_{\boldsymbol{n}} + \boldsymbol{b}) = 1$$

necessary constraints: $y_n(\mathbf{w}^T \mathbf{x}_n + \mathbf{b}) \ge 1$ for all n

original constraint: $\min_{n=1,...,N} y_n(\mathbf{w}^T \mathbf{x}_n + \mathbf{b}) = 1$ want: optimal (**b**, **w**) here (inside)

if optimal (\mathbf{b}, \mathbf{w}) outside, e.g. $y_n(\mathbf{w}^T \mathbf{x}_n + \mathbf{b}) > 1.126$ for all *n* —can scale (\mathbf{b}, \mathbf{w}) to "more optimal" $(\frac{\mathbf{b}}{1.126}, \frac{\mathbf{w}}{1.126})$ (contradiction!)

final change: max
$$\implies$$
 min, remove $\sqrt{-}$, add $\frac{1}{2}$
min $\frac{1}{2}\mathbf{w}^T\mathbf{w}$
subject to $y_n(\mathbf{w}^T\mathbf{x}_n + \mathbf{b}) \ge 1$ for all n

Hsuan-Tien Lin (NTU CSIE)

Consider three examples $(\mathbf{x}_1, +1)$, $(\mathbf{x}_2, +1)$, $(\mathbf{x}_3, -1)$, where $\mathbf{x}_1 = (3,0)$, $\mathbf{x}_2 = (0,4)$, $\mathbf{x}_3 = (0,0)$. In addition, consider a hyperplane $x_1 + x_2 = 1$. Which of the following is not true?

- the hyperplane is a separating one for the three examples
- 2 the distance from the hyperplane to \mathbf{x}_1 is 2
- **(3)** the distance from the hyperplane to \mathbf{x}_3 is $\frac{1}{\sqrt{2}}$
- 4 the example that is closest to the hyperplane is \mathbf{x}_3

Consider three examples $(\mathbf{x}_1, +1)$, $(\mathbf{x}_2, +1)$, $(\mathbf{x}_3, -1)$, where $\mathbf{x}_1 = (3,0)$, $\mathbf{x}_2 = (0,4)$, $\mathbf{x}_3 = (0,0)$. In addition, consider a hyperplane $x_1 + x_2 = 1$. Which of the following is not true?

- 1 the hyperplane is a separating one for the three examples
- 2 the distance from the hyperplane to \mathbf{x}_1 is 2
- **(3)** the distance from the hyperplane to \mathbf{x}_3 is $\frac{1}{\sqrt{2}}$
- 4 the example that is closest to the hyperplane is \mathbf{x}_3

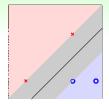
Reference Answer: (2)

The distance from the hyperplane to \boldsymbol{x}_1 is $\frac{1}{\sqrt{2}}(3+0-1)=\sqrt{2}.$

Support Vector Machine

Solving a Particular Standard Problem

$$\min_{\substack{b,\mathbf{w}}\\ \text{subject to}} \quad \frac{1}{2}\mathbf{w}^T\mathbf{w}$$
$$y_n(\mathbf{w}^T\mathbf{x}_n + \mathbf{b}) \ge 1 \text{ for all } n$$



$$X = \begin{bmatrix} 0 & 0 \\ 2 & 2 \\ 2 & 0 \\ 3 & 0 \end{bmatrix} \quad \mathbf{y} = \begin{bmatrix} -1 \\ -1 \\ +1 \\ +1 \\ +1 \end{bmatrix} \qquad \begin{array}{c} -2w_1 - 2w_2 - b \ge 1 \quad (ii) \\ 2w_1 & +b \ge 1 \quad (iii) \\ 3w_1 & +b \ge 1 \quad (iv) \end{array}$$

$$\left\{ \begin{array}{c} (i) & \& & (iii) \\ (ii) & \& & (iii) \\ \& & (iii) \end{array} \right\} \implies w_1 \ge +1 \\ (ii) & \& & (iii) \end{array} \right\} \implies w_2 \le -1 \end{array} \right\} \Longrightarrow \frac{1}{2} \mathbf{w}^T \mathbf{w} \ge 1$$

$$\left\{ \begin{array}{c} (w_1 = 1, w_2 = -1, b = -1) \text{ at lower bound and satisfies } (i) - (in) \\ (in) = 0 \end{array} \right\}$$

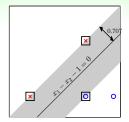
$$g_{\text{SVM}}(\mathbf{x}) = \text{sign}(x_1 - x_2 - 1)$$
: SVM? :-)

Hsuan-Tien Lin (NTU CSIE)

Support Vector Machine

Support Vector Machine (SVM)

optimal solution: $(w_1 = 1, w_2 = -1, b = -1)$ margin(b, w) $= \frac{1}{\|w\|} = \frac{1}{\sqrt{2}}$



- examples on boundary: 'locates' fattest hyperplane other examples: not needed
- call boundary example support vector (candidate)

support vector machine (SVM): learn fattest hyperplanes (with help of support vectors)

Support Vector Machine

Solving General SVM

 $\min_{\substack{b,\mathbf{w}}} \quad \frac{1}{2}\mathbf{w}^{\mathsf{T}}\mathbf{w}$ subject to $y_n(\mathbf{w}^{\mathsf{T}}\mathbf{x}_n + b) \ge 1$ for all n

- not easy manually, of course :-)
- gradient descent? not easy with constraints
- Iuckily:
 - (convex) quadratic objective function of (b, w)
 - linear constraints of (b, w)

-quadratic programming

quadratic programming (QP):

'easy' optimization problem

Support Vector Machine

Quadratic Programming

optimal
$$(b, \mathbf{w}) = ?$$

min $\frac{1}{2}\mathbf{w}^T\mathbf{w}$
subject to $y_n(\mathbf{w}^T\mathbf{x}_n + b) \ge 1$,
for $n = 1, 2, ..., N$

botimal
$$\mathbf{u} \leftarrow QP(\mathbf{Q}, \mathbf{p}, \mathbf{A}, \mathbf{c})$$

min $\frac{1}{2}\mathbf{u}^T Q \mathbf{u} + \mathbf{p}^T \mathbf{u}$
ubject to $\mathbf{a}_m^T \mathbf{u} \ge c_m,$
for $m = 1, 2, ..., M$

objective function:

constraints:

$$\mathbf{u} = \begin{bmatrix} b \\ \mathbf{w} \end{bmatrix}; \mathbf{Q} = \begin{bmatrix} 0 & \mathbf{0}_d^T \\ \mathbf{0}_d & \mathbf{I}_d \end{bmatrix}; \mathbf{p} = \mathbf{0}_{d+1}$$
$$\mathbf{a}_n^T = \mathbf{y}_n \begin{bmatrix} 1 & \mathbf{x}_n^T \end{bmatrix}; c_n = 1; \mathbf{M} = \mathbf{N}$$

SVM with general QP solver: easy if you've read the manual :-)

Hsuan-Tien Lin (NTU CSIE)

Support Vector Machine

SVM with QP Solver

Linear Hard-Margin SVM Algorithm

1
$$\mathbf{Q} = \begin{bmatrix} \mathbf{0} & \mathbf{0}_d' \\ \mathbf{0}_d & \mathbf{I}_d \end{bmatrix}; \mathbf{p} = \mathbf{0}_{d+1}; \mathbf{a}_n^T = \mathbf{y}_n \begin{bmatrix} \mathbf{1} & \mathbf{x}_n^T \end{bmatrix}; c_n = 1$$

2 $\begin{bmatrix} b \\ \mathbf{w} \end{bmatrix} \leftarrow \mathbf{QP}(\mathbf{Q}, \mathbf{p}, \mathbf{A}, \mathbf{c})$
3 return b & w as g_{SVM}

- hard-margin: nothing violate 'fat boundary'
- linear: x_n

want **non-linear**? $\mathbf{z}_n = \mathbf{\Phi}(\mathbf{x}_n)$ —remember? :-)

Hsuan-Tien Lin (NTU CSIE)

Consider two negative examples with $\mathbf{x}_1 = (0,0)$ and $\mathbf{x}_2 = (2,2)$; two positive examples with $\mathbf{x}_3 = (2,0)$ and $\mathbf{x}_4 = (3,0)$, as shown on page 17 of the slides. Define \mathbf{u} , Q, \mathbf{p} , c_n as those listed on page 20 of the slides. What are \mathbf{a}_n^T that need to be fed into the QP solver?

1 $\mathbf{a}_1^T = [-1, 0, 0]$, $\mathbf{a}_{2}^{T} = [-1, 2, 2]$, $\mathbf{a}_3^T = [-1, 2, 0]$, $\mathbf{a}_4^T = [-1, 3, 0]$
2 $\mathbf{a}_1^T = [1, 0, 0]$, $\mathbf{a}_2^T = [1, -2, -2]$, $\boldsymbol{a}_3^{\mathcal{T}} = [-1,2,0]$, $\boldsymbol{a}_4^{\mathcal{T}} = [-1,3,0]$
3 $\mathbf{a}_1^T = [1, 0, 0]$, $\mathbf{a}_{2}^{T} = [1, 2, 2]$, $\boldsymbol{a}_3^{\mathcal{T}} = [1,2,0]$, $\boldsymbol{a}_4^{\mathcal{T}} = [1, 3, 0]$
4 $\mathbf{a}_1^T = [-1, 0, 0]$, $\mathbf{a}_2^T = [-1, -2, -2]$], $\mathbf{a}_3^{\mathcal{T}} = [1, 2, 0]$, $\boldsymbol{a}_4^{\mathcal{T}} = [1,3,0]$

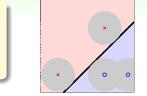
Consider two negative examples with $\mathbf{x}_1 = (0,0)$ and $\mathbf{x}_2 = (2,2)$; two positive examples with $\mathbf{x}_3 = (2,0)$ and $\mathbf{x}_4 = (3,0)$, as shown on page 17 of the slides. Define \mathbf{u} , Q, \mathbf{p} , c_n as those listed on page 20 of the slides. What are \mathbf{a}_n^T that need to be fed into the QP solver?

1 $\mathbf{a}_1^T = [-1, 0, 0]$, $\mathbf{a}_2^T = [-1, 2, 2]$, $\mathbf{a}_3^T =$	$[-1, 2, 0]$, $\mathbf{a}_4^T = [-1, 3, 0]$
2 $\mathbf{a}_1^T = [1, 0, 0]$, $\boldsymbol{a}_2^{\mathcal{T}} = [1,-2,-2]$, $\boldsymbol{a}_3^{\mathcal{T}} =$	$[-1, 2, 0]$, $\mathbf{a}_4^T = [-1, 3, 0]$
3 $\mathbf{a}_1^T = [1, 0, 0]$, $\boldsymbol{a}_2^{\mathcal{T}} = [1,2,2]$, $\boldsymbol{a}_3^{\mathcal{T}} =$	$[1,2,0]$, $\mathbf{a}_4^T = [1,3,0]$
4 $\mathbf{a}_1^T = [-1, 0, 0]$, $\boldsymbol{a}_2^{\mathcal{T}} = [-1,-2,-2]$, $\boldsymbol{a}_3^{\mathcal{T}} =$	$[1, 2, 0]$, $\mathbf{a}_4^T = [1, 3, 0]$

Reference Answer: (4)

We need $\mathbf{a}_n^T = \mathbf{y}_n \begin{bmatrix} 1 & \mathbf{x}_n^T \end{bmatrix}$.

Why Large-Margin Hyperplane?



min _{b,w}	$\frac{1}{2}\mathbf{W}^T\mathbf{W}$
subject to	$y_n(\mathbf{w}^T \mathbf{z}_n + b) \ge 1$ for all n

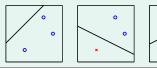
	minimize	constraint
regularization	E _{in}	$\mathbf{w}^{T}\mathbf{w} \leq \mathbf{C}$
SVM	w ^T w	$E_{\rm in} = 0$ [and more]

SVM (large-margin hyperplane): **'weight-decay regularization' within** $E_{in} = 0$

Large-Margin Restricts Dichotomies

consider 'large-margin algorithm' A_{ρ} : either returns *g* with margin(*g*) $\geq \rho$ (if exists), or 0 otherwise

\mathcal{A}_0 : like PLA \Longrightarrow shatter 'general' 3 inputs



 $\mathcal{A}_{1.126}$: more strict than SVM \Longrightarrow cannot shatter any 3 inputs

fewer dichotomies \implies smaller 'VC dim.' \implies better generalization

Hsuan-Tien Lin (NTU CSIE)

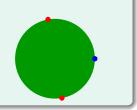
Reasons behind Large-Margin Hyperplane

VC Dimension of Large-Margin Algorithm

fewer dichotomies \implies smaller 'VC dim.' considers $d_{VC}(\mathcal{A}_{\rho})$ [data-dependent, need more than VC] instead of $d_{VC}(\mathcal{H})$ [data-independent, covered by VC]

$d_{VC}(\mathcal{A}_{\rho})$ when \mathcal{X} = unit circle in \mathbb{R}^2

- $\rho = 0$: just perceptrons ($d_{VC} = 3$)
- ρ > √3/2: cannot shatter any 3 inputs (d_{VC} < 3) —some inputs must be of distance < √3



generally, when \mathcal{X} in radius-R hyperball:

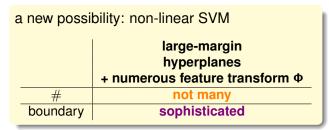
$$d_{\rm VC}(\mathcal{A}_{\rho}) \leq \min\left(\frac{R^2}{\rho^2}, d\right) + 1 \leq \underbrace{d_{\rm VC}({\sf perceptrons})}_{d_{\rm VC}({\sf perceptrons})}$$

Hsuan-Tien Lin (NTU CSIE)

Benefits of Large-Margin Hyperplanes

	large-margin hyperplanes	hyperplanes	hyperplanes + feature transform ${f \Phi}$
#	even fewer	not many	many
boundary	simple	simple	sophisticated

- **not many** good, for d_{VC} and generalization
- sophisticated good, for possibly better E_{in}



Hsuan-Tien Lin (NTU CSIE)

Consider running the 'large-margin algorithm' \mathcal{A}_{ρ} with $\rho = \frac{1}{4}$ on a \mathcal{Z} -space such that $\mathbf{z} = \mathbf{\Phi}(\mathbf{x})$ is of 1126 dimensions (excluding z_0) and $\|\mathbf{z}\| \leq 1$. What is the upper bound of $d_{vc}(\mathcal{A}_{\rho})$ when calculated by min $\left(\frac{R^2}{\rho^2}, d\right) + 1$? 1 5 2 17 3 1126 4 1127

Consider running the 'large-margin algorithm' \mathcal{A}_{ρ} with $\rho = \frac{1}{4}$ on a \mathcal{Z} -space such that $\mathbf{z} = \mathbf{\Phi}(\mathbf{x})$ is of 1126 dimensions (excluding z_0) and $\|\mathbf{z}\| \leq 1$. What is the upper bound of $d_{VC}(\mathcal{A}_{\rho})$ when calculated by $\min\left(\frac{R^2}{\rho^2}, d\right) + 1$? 1 5 2 17 3 1126 4 1127

Reference Answer: (2)

By the description, d = 1126 and R = 1. So the upper bound is simply 17.

Summary

1 Embedding Numerous Features: Kernel Models

Lecture 1: Linear Support Vector Machine

Course Introduction

from foundations to techniques

- Large-Margin Separating Hyperplane intuitively more robust against noise
- Standard Large-Margin Problem
- minimize 'length of w' at special separating scale
 - Support Vector Machine

'easy' via quadratic programming

- Reasons behind Large-Margin Hyperplane fewer dichotomies and better generalization
- next: solving non-linear Support Vector Machine
- 2 Combining Predictive Features: Aggregation Models3 Distilling Implicit Features: Extraction Models