### Machine Learning Techniques (機器學習技法)



#### Lecture 1: Linear Support Vector Machine

Hsuan-Tien Lin (林軒田) htlin@csie.ntu.edu.tw

Department of Computer Science & Information Engineering

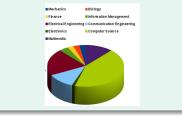
National Taiwan University (國立台灣大學資訊工程系)



#### Course Introduction Course History

#### **NTU Version**

- 15-17 weeks (2+ hours)
- highly-praised with English and blackboard teaching



#### **Coursera Version**

- 8 weeks of 'foundations' (previous course) + 8 weeks of 'techniques' (this course)
- Mandarin teaching to reach more audience in need
- slides teaching improved with Coursera's quiz and homework mechanisms

goal: try making Coursera version even better than NTU version

### Course Design

#### from Foundations to Techniques

- mixture of philosophical illustrations, key theory, core algorithms, usage in practice, and hopefully jokes :-)
- three major techniques surrounding feature transforms:
  - Embedding Numerous Features: how to exploit and regularize numerous features?
    - -inspires Support Vector Machine (SVM) model
  - Combining Predictive Features: how to construct and blend predictive features?
    - -inspires Adaptive Boosting (AdaBoost) model
  - Distilling Implicit Features: how to identify and learn implicit features?
    - -inspires Deep Learning model

#### allows students to use ML professionally

### Which of the following description of this course is true?

- the course will be taught in Taiwanese
- 2 the course will tell me the techniques that create the android Lieutenant Commander Data in Star Trek
- 8 the course will be 16 weeks long
- 4 the course will focus on three major techniques

### Which of the following description of this course is true?

- the course will be taught in Taiwanese
- 2 the course will tell me the techniques that create the android Lieutenant Commander Data in Star Trek
- 8 the course will be 16 weeks long
- 4 the course will focus on three major techniques

### Reference Answer: (4)

- no, my Taiwanese is unfortunately not good enough for teaching (yet)
- 2 no, although what we teach may serve as building blocks
- on, unless you have also joined the previous course
- 4 yes, let's get started!

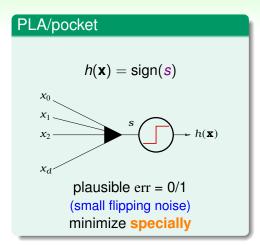
### Roadmap

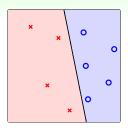
Embedding Numerous Features: Kernel Models

### Lecture 1: Linear Support Vector Machine

- Course Introduction
- Large-Margin Separating Hyperplane
- Standard Large-Margin Problem
- Support Vector Machine
- Reasons behind Large-Margin Hyperplane
- 2 Combining Predictive Features: Aggregation Models
- Oistilling Implicit Features: Extraction Models

### Linear Classification Revisited





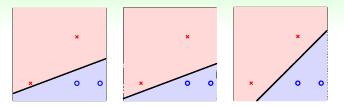
(linear separable)

linear (hyperplane) classifiers:  $h(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^{\top}\mathbf{x})$ 

Hsuan-Tien Lin (NTU CSIE)

Large-Margin Separating Hyperplane

### Which Line Is Best?



- PLA? depending on randomness
- VC bound? whichever you like!

$$E_{\text{out}}(\mathbf{w}) \leq \underbrace{E_{\text{in}}(\mathbf{w})}_{0} + \underbrace{\Omega(\mathcal{H})}_{d_{\text{VC}}=d+1}$$

### You? rightmost one, possibly :-)

Hsuan-Tien Lin (NTU CSIE)

# Why Rightmost Hyperplane?



### informal argument

if (Gaussian-like) noise on future  $\mathbf{x} \approx \mathbf{x}_n$ :

 $\mathbf{x}_n$  further from hyperplane

- $\iff$  tolerate more noise
- $\iff$  more robust to overfitting

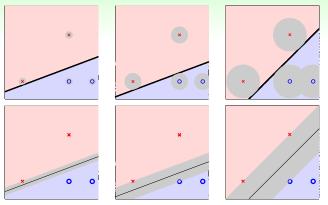
distance to closest  $\mathbf{x}_n$ 

- $\iff$  amount of noise tolerance
  - $\iff$  robustness of hyperplane

rightmost one: more robust because of larger distance to closest x<sub>n</sub>

Large-Margin Separating Hyperplane

### Fat Hyperplane



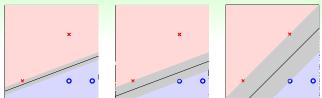
- robust separating hyperplane: fat —far from both sides of examples
- robustness  $\equiv$  **fatness**: distance to closest  $\mathbf{x}_n$

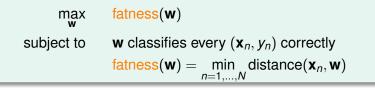
goal: find fattest separating hyperplane

Hsuan-Tien Lin (NTU CSIE)

Large-Margin Separating Hyperplane

### Large-Margin Separating Hyperplane





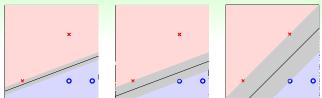
- fatness: formally called margin
- correctness:  $y_n = \operatorname{sign}(\mathbf{w}^T \mathbf{x}_n)$

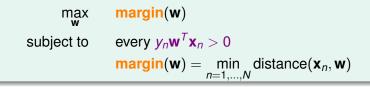
### goal: find largest-margin separating hyperplane

Hsuan-Tien Lin (NTU CSIE)

Large-Margin Separating Hyperplane

### Large-Margin Separating Hyperplane





- fatness: formally called margin
- correctness:  $y_n = \operatorname{sign}(\mathbf{w}^T \mathbf{x}_n)$

### goal: find largest-margin separating hyperplane

Hsuan-Tien Lin (NTU CSIE)

Consider two examples  $(\mathbf{v}, +1)$  and  $(-\mathbf{v}, -1)$  where  $\mathbf{v} \in \mathbb{R}^2$  (without padding the  $v_0 = 1$ ). Which of the following hyperplane is the largest-margin separating one for the two examples? You are highly encouraged to visualize by considering, for instance,  $\mathbf{v} = (3, 2)$ .

1 
$$x_1 = 0$$
  
2  $x_2 = 0$ 

$$v_1x_1 + v_2x_2 = 0$$

$$4 v_2 x_1 + v_1 x_2 = 0$$

Consider two examples  $(\mathbf{v}, +1)$  and  $(-\mathbf{v}, -1)$  where  $\mathbf{v} \in \mathbb{R}^2$  (without padding the  $v_0 = 1$ ). Which of the following hyperplane is the largest-margin separating one for the two examples? You are highly encouraged to visualize by considering, for instance,  $\mathbf{v} = (3, 2)$ .

1 
$$x_1 = 0$$

**2** 
$$x_2 = 0$$

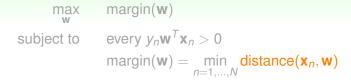
$$v_2 x_1 + v_1 x_2 = 0$$

#### Reference Answer: (3)

Here the largest-margin separating hyperplane (line) must be a perpendicular bisector of the line segment between  $\mathbf{v}$  and  $-\mathbf{v}$ . Hence  $\mathbf{v}$  is a normal vector of the largest-margin line. The result can be extended to the more general case of  $\mathbf{v} \in \mathbb{R}^d$ .

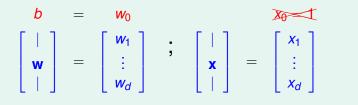
Hsuan-Tien Lin (NTU CSIE)

#### Linear Support Vector Machine Standard Large-Margin Problem Distance to Hyperplane: Preliminary



#### 'shorten' **x** and **w**

distance needs  $w_0$  and  $(w_1, \ldots, w_d)$  differently (to be derived)

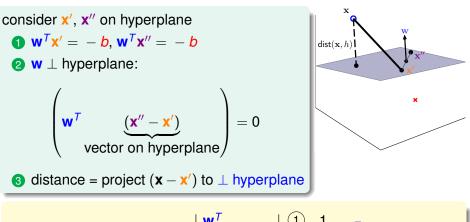


for this part: 
$$h(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^T \mathbf{x} + \mathbf{b})$$

Hsuan-Tien Lin (NTU CSIE)

Standard Large-Margin Problem

Distance to Hyperplane want: distance( $\mathbf{x}, \mathbf{b}, \mathbf{w}$ ), with hyperplane  $\mathbf{w}^T \mathbf{x}' + \mathbf{b} = \mathbf{0}$ 



distance
$$(\mathbf{x}, \mathbf{b}, \mathbf{w}) = \left| \frac{\mathbf{w}'}{\|\mathbf{w}\|} (\mathbf{x} - \mathbf{x}') \right| \stackrel{(1)}{=} \frac{1}{\|\mathbf{w}\|} |\mathbf{w}^T \mathbf{x} + \mathbf{b}|$$

Hsuan-Tien Lin (NTU CSIE)

Standard Large-Margin Problem

### Distance to Separating Hyperplane

distance
$$(\mathbf{x}, \mathbf{b}, \mathbf{w}) = \frac{1}{\|\mathbf{w}\|} |\mathbf{w}^T \mathbf{x} + \mathbf{b}|$$

• separating hyperplane: for every n

 $y_n(\mathbf{w}^T\mathbf{x}_n+b)>0$ 

distance to separating hyperplane:

distance
$$(\mathbf{x}_n, \mathbf{b}, \mathbf{w}) = \frac{1}{\|\mathbf{w}\|} y_n(\mathbf{w}^T \mathbf{x}_n + \mathbf{b})$$

$$\max_{\substack{b,\mathbf{w}\\b,\mathbf{w}}} \max(\mathbf{w}^{T}\mathbf{x}_{n} + \mathbf{b}) > 0$$
subject to
$$\operatorname{every} y_{n}(\mathbf{w}^{T}\mathbf{x}_{n} + \mathbf{b}) > 0$$

$$\operatorname{margin}(\mathbf{b}, \mathbf{w}) = \min_{n=1,...,N} \frac{1}{\|\mathbf{w}\|} y_{n}(\mathbf{w}^{T}\mathbf{x}_{n} + \mathbf{b})$$

Hsuan-Tien Lin (NTU CSIE)

Standard Large-Margin Problem

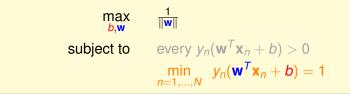
# Margin of Special Separating Hyperplane

 $\max_{\substack{\boldsymbol{b}, \mathbf{w} \\ \boldsymbol{b}, \mathbf{w}}} \operatorname{margin}(\boldsymbol{b}, \mathbf{w})$ subject to  $\operatorname{every} y_n(\mathbf{w}^T \mathbf{x}_n + \mathbf{b}) > 0$   $\operatorname{margin}(\boldsymbol{b}, \mathbf{w}) = \min_{n=1, \dots, N} \frac{1}{\|\mathbf{w}\|} y_n(\mathbf{w}^T \mathbf{x}_n + \mathbf{b})$ 

•  $\mathbf{w}^T \mathbf{x} + \mathbf{b} = 0$  same as  $3\mathbf{w}^T \mathbf{x} + 3\mathbf{b} = 0$ : scaling does not matter

• special scaling: only consider separating (b, w) such that

$$\min_{n=1,\ldots,N} y_n(\mathbf{w}^T \mathbf{x}_n + b) = 1 \Longrightarrow \operatorname{margin}(b, \mathbf{w}) = \frac{1}{\|\mathbf{w}\|}$$



Hsuan-Tien Lin (NTU CSIE)

Standard Large-Margin Problem

# Standard Large-Margin Hyperplane Problem

$$\max_{\boldsymbol{b}, \mathbf{w}} \quad \frac{1}{\|\mathbf{w}\|} \quad \text{subject to} \min_{\boldsymbol{n}=1, \dots, N} \quad \boldsymbol{y}_{\boldsymbol{n}}(\mathbf{w}^{\mathsf{T}} \mathbf{x}_{\boldsymbol{n}} + \boldsymbol{b}) = 1$$

necessary constraints:  $y_n(\mathbf{w}^T \mathbf{x}_n + \mathbf{b}) \ge 1$  for all n

original constraint:  $\min_{n=1,...,N} y_n(\mathbf{w}^T \mathbf{x}_n + \mathbf{b}) = 1$ want: optimal (**b**, **w**) here (inside)

if optimal  $(\mathbf{b}, \mathbf{w})$  outside, e.g.  $y_n(\mathbf{w}^T \mathbf{x}_n + \mathbf{b}) > 1.126$  for all *n* —can scale  $(\mathbf{b}, \mathbf{w})$  to "more optimal"  $(\frac{\mathbf{b}}{1.126}, \frac{\mathbf{w}}{1.126})$  (contradiction!)

final change: max 
$$\implies$$
 min, remove  $\sqrt{-}$ , add  $\frac{1}{2}$   
min  $\frac{1}{2}\mathbf{w}^T\mathbf{w}$   
subject to  $y_n(\mathbf{w}^T\mathbf{x}_n + \mathbf{b}) \ge 1$  for all  $n$ 

Hsuan-Tien Lin (NTU CSIE)

Consider three examples  $(\mathbf{x}_1, +1)$ ,  $(\mathbf{x}_2, +1)$ ,  $(\mathbf{x}_3, -1)$ , where  $\mathbf{x}_1 = (3,0)$ ,  $\mathbf{x}_2 = (0,4)$ ,  $\mathbf{x}_3 = (0,0)$ . In addition, consider a hyperplane  $x_1 + x_2 = 1$ . Which of the following is not true?

- the hyperplane is a separating one for the three examples
- 2 the distance from the hyperplane to  $\mathbf{x}_1$  is 2
- **(3)** the distance from the hyperplane to  $\mathbf{x}_3$  is  $\frac{1}{\sqrt{2}}$
- 4 the example that is closest to the hyperplane is  $\mathbf{x}_3$

Consider three examples  $(\mathbf{x}_1, +1)$ ,  $(\mathbf{x}_2, +1)$ ,  $(\mathbf{x}_3, -1)$ , where  $\mathbf{x}_1 = (3,0)$ ,  $\mathbf{x}_2 = (0,4)$ ,  $\mathbf{x}_3 = (0,0)$ . In addition, consider a hyperplane  $x_1 + x_2 = 1$ . Which of the following is not true?

- 1 the hyperplane is a separating one for the three examples
- 2 the distance from the hyperplane to  $\mathbf{x}_1$  is 2
- **(3)** the distance from the hyperplane to  $\mathbf{x}_3$  is  $\frac{1}{\sqrt{2}}$
- 4 the example that is closest to the hyperplane is  $\mathbf{x}_3$

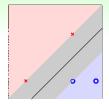
### Reference Answer: (2)

The distance from the hyperplane to  $\boldsymbol{x}_1$  is  $\frac{1}{\sqrt{2}}(3+0-1)=\sqrt{2}.$ 

Support Vector Machine

## Solving a Particular Standard Problem

$$\min_{\substack{b,\mathbf{w}}\\ \text{subject to}} \quad \frac{1}{2}\mathbf{w}^T\mathbf{w}$$
$$y_n(\mathbf{w}^T\mathbf{x}_n + \mathbf{b}) \ge 1 \text{ for all } n$$



$$X = \begin{bmatrix} 0 & 0 \\ 2 & 2 \\ 2 & 0 \\ 3 & 0 \end{bmatrix} \quad \mathbf{y} = \begin{bmatrix} -1 \\ -1 \\ +1 \\ +1 \\ +1 \end{bmatrix} \qquad \begin{array}{c} -2w_1 - 2w_2 - b \ge 1 \quad (ii) \\ 2w_1 & +b \ge 1 \quad (iii) \\ 3w_1 & +b \ge 1 \quad (iv) \end{array}$$
  

$$\left\{ \begin{array}{c} (i) & \& & (iii) \\ (ii) & \& & (iii) \\ \& & (iii) \end{array} \right\} \implies w_1 \ge +1 \\ (ii) & \& & (iii) \end{array} \right\} \implies w_2 \le -1 \end{array} \right\} \Longrightarrow \frac{1}{2} \mathbf{w}^T \mathbf{w} \ge 1$$
  

$$\left\{ \begin{array}{c} (w_1 = 1, w_2 = -1, b = -1) \text{ at lower bound and satisfies } (i) - (in) \\ (in) = 0 \end{array} \right\}$$

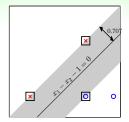
$$g_{\text{SVM}}(\mathbf{x}) = \text{sign}(x_1 - x_2 - 1)$$
: SVM? :-)

Hsuan-Tien Lin (NTU CSIE)

Support Vector Machine

# Support Vector Machine (SVM)

optimal solution:  $(w_1 = 1, w_2 = -1, b = -1)$ margin(b, w)  $= \frac{1}{\|w\|} = \frac{1}{\sqrt{2}}$ 



- examples on boundary: 'locates' fattest hyperplane other examples: not needed
- call boundary example support vector (candidate)

support vector machine (SVM): learn fattest hyperplanes (with help of support vectors )

Support Vector Machine

# Solving General SVM

 $\min_{\substack{b,\mathbf{w}}} \quad \frac{1}{2}\mathbf{w}^{\mathsf{T}}\mathbf{w}$ subject to  $y_n(\mathbf{w}^{\mathsf{T}}\mathbf{x}_n + b) \ge 1$  for all n

- not easy manually, of course :-)
- gradient descent? not easy with constraints
- Iuckily:
  - (convex) quadratic objective function of (b, w)
  - linear constraints of (b, w)

-quadratic programming

### quadratic programming (QP):

'easy' optimization problem

Support Vector Machine

# Quadratic Programming

optimal 
$$(b, \mathbf{w}) = ?$$
  
min  $\frac{1}{2}\mathbf{w}^T\mathbf{w}$   
subject to  $y_n(\mathbf{w}^T\mathbf{x}_n + b) \ge 1$ ,  
for  $n = 1, 2, ..., N$ 

botimal 
$$\mathbf{u} \leftarrow QP(\mathbf{Q}, \mathbf{p}, \mathbf{A}, \mathbf{c})$$
  
min  $\frac{1}{2}\mathbf{u}^T Q \mathbf{u} + \mathbf{p}^T \mathbf{u}$   
ubject to  $\mathbf{a}_m^T \mathbf{u} \ge c_m,$   
for  $m = 1, 2, ..., M$ 

objective function:

constraints:

$$\mathbf{u} = \begin{bmatrix} b \\ \mathbf{w} \end{bmatrix}; \mathbf{Q} = \begin{bmatrix} 0 & \mathbf{0}_d^T \\ \mathbf{0}_d & \mathbf{I}_d \end{bmatrix}; \mathbf{p} = \mathbf{0}_{d+1}$$
$$\mathbf{a}_n^T = \mathbf{y}_n \begin{bmatrix} 1 & \mathbf{x}_n^T \end{bmatrix}; c_n = 1; \mathbf{M} = \mathbf{N}$$

#### SVM with general QP solver: easy if you've read the manual :-)

Hsuan-Tien Lin (NTU CSIE)

Support Vector Machine

SVM with QP Solver

Linear Hard-Margin SVM Algorithm

**1** 
$$\mathbf{Q} = \begin{bmatrix} \mathbf{0} & \mathbf{0}_d' \\ \mathbf{0}_d & \mathbf{I}_d \end{bmatrix}; \mathbf{p} = \mathbf{0}_{d+1}; \mathbf{a}_n^T = \mathbf{y}_n \begin{bmatrix} \mathbf{1} & \mathbf{x}_n^T \end{bmatrix}; c_n = 1$$
  
**2**  $\begin{bmatrix} b \\ \mathbf{w} \end{bmatrix} \leftarrow \mathbf{QP}(\mathbf{Q}, \mathbf{p}, \mathbf{A}, \mathbf{c})$   
**3** return  $b$  & w as  $g_{\text{SVM}}$ 

- hard-margin: nothing violate 'fat boundary'
- linear: x<sub>n</sub>

want **non-linear**?  $\mathbf{z}_n = \mathbf{\Phi}(\mathbf{x}_n)$ —remember? :-)

Hsuan-Tien Lin (NTU CSIE)

Consider two negative examples with  $\mathbf{x}_1 = (0,0)$  and  $\mathbf{x}_2 = (2,2)$ ; two positive examples with  $\mathbf{x}_3 = (2,0)$  and  $\mathbf{x}_4 = (3,0)$ , as shown on page 17 of the slides. Define  $\mathbf{u}$ , Q,  $\mathbf{p}$ ,  $c_n$  as those listed on page 20 of the slides. What are  $\mathbf{a}_n^T$  that need to be fed into the QP solver?

| <b>1</b> $\mathbf{a}_1^T = [-1, 0, 0]$ | , $\mathbf{a}_{2}^{T} = [-1, 2, 2]$ | , $\mathbf{a}_3^T = [-1, 2, 0]$               | , $\mathbf{a}_4^T = [-1, 3, 0]$                |
|----------------------------------------|-------------------------------------|-----------------------------------------------|------------------------------------------------|
| <b>2</b> $\mathbf{a}_1^T = [1, 0, 0]$  | , $\mathbf{a}_2^T = [1, -2, -2]$    | , $\boldsymbol{a}_3^{\mathcal{T}} = [-1,2,0]$ | , $\boldsymbol{a}_4^{\mathcal{T}} = [-1,3,0]$  |
| <b>3</b> $\mathbf{a}_1^T = [1, 0, 0]$  | , $\mathbf{a}_{2}^{T} = [1, 2, 2]$  | , $\boldsymbol{a}_3^{\mathcal{T}} = [1,2,0]$  | , $\boldsymbol{a}_4^{\mathcal{T}} = [1, 3, 0]$ |
| <b>4</b> $\mathbf{a}_1^T = [-1, 0, 0]$ | , $\mathbf{a}_2^T = [-1, -2, -2]$   | ], $\mathbf{a}_3^{\mathcal{T}} = [1, 2, 0]$   | , $\boldsymbol{a}_4^{\mathcal{T}} = [1,3,0]$   |

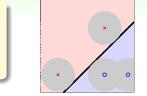
Consider two negative examples with  $\mathbf{x}_1 = (0,0)$  and  $\mathbf{x}_2 = (2,2)$ ; two positive examples with  $\mathbf{x}_3 = (2,0)$  and  $\mathbf{x}_4 = (3,0)$ , as shown on page 17 of the slides. Define  $\mathbf{u}$ , Q,  $\mathbf{p}$ ,  $c_n$  as those listed on page 20 of the slides. What are  $\mathbf{a}_n^T$  that need to be fed into the QP solver?

| <b>1</b> $\mathbf{a}_1^T = [-1, 0, 0]$ | , $\mathbf{a}_2^T = [-1, 2, 2]$ , $\mathbf{a}_3^T =$                                 | $[-1, 2, 0]$ , $\mathbf{a}_4^T = [-1, 3, 0]$ |
|----------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------|
| <b>2</b> $\mathbf{a}_1^T = [1, 0, 0]$  | , $\boldsymbol{a}_2^{\mathcal{T}} = [1,-2,-2]$ , $\boldsymbol{a}_3^{\mathcal{T}} =$  | $[-1, 2, 0]$ , $\mathbf{a}_4^T = [-1, 3, 0]$ |
| <b>3</b> $\mathbf{a}_1^T = [1, 0, 0]$  | , $\boldsymbol{a}_2^{\mathcal{T}} = [1,2,2]$ , $\boldsymbol{a}_3^{\mathcal{T}} =$    | $[1,2,0]$ , $\mathbf{a}_4^T = [1,3,0]$       |
| 4 $\mathbf{a}_1^T = [-1, 0, 0]$        | , $\boldsymbol{a}_2^{\mathcal{T}} = [-1,-2,-2]$ , $\boldsymbol{a}_3^{\mathcal{T}} =$ | $[1, 2, 0]$ , $\mathbf{a}_4^T = [1, 3, 0]$   |

Reference Answer: (4)

We need  $\mathbf{a}_n^T = \mathbf{y}_n \begin{bmatrix} 1 & \mathbf{x}_n^T \end{bmatrix}$ .

# Why Large-Margin Hyperplane?



| min<br><sub>b,w</sub> | $\frac{1}{2}\mathbf{W}^T\mathbf{W}$                    |
|-----------------------|--------------------------------------------------------|
| subject to            | $y_n(\mathbf{w}^T \mathbf{z}_n + b) \ge 1$ for all $n$ |

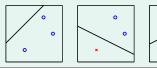
|                | minimize         | constraint                                 |
|----------------|------------------|--------------------------------------------|
| regularization | E <sub>in</sub>  | $\mathbf{w}^{T}\mathbf{w} \leq \mathbf{C}$ |
| SVM            | w <sup>T</sup> w | $E_{\rm in} = 0$ [and more]                |

SVM (large-margin hyperplane): **'weight-decay regularization' within**  $E_{in} = 0$ 

### Large-Margin Restricts Dichotomies

consider 'large-margin algorithm'  $A_{\rho}$ : either returns *g* with margin(*g*)  $\geq \rho$  (if exists), or 0 otherwise

### $\mathcal{A}_0$ : like PLA $\Longrightarrow$ shatter 'general' 3 inputs







 $\mathcal{A}_{1.126}$ : more strict than SVM  $\Longrightarrow$  cannot shatter any 3 inputs



fewer dichotomies  $\implies$  smaller 'VC dim.'  $\implies$  better generalization

Hsuan-Tien Lin (NTU CSIE)

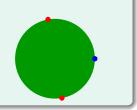
Reasons behind Large-Margin Hyperplane

### VC Dimension of Large-Margin Algorithm

fewer dichotomies  $\implies$  smaller 'VC dim.' considers  $d_{VC}(\mathcal{A}_{\rho})$  [data-dependent, need more than VC] instead of  $d_{VC}(\mathcal{H})$  [data-independent, covered by VC]

### $d_{VC}(\mathcal{A}_{\rho})$ when $\mathcal{X}$ = unit circle in $\mathbb{R}^2$

- $\rho = 0$ : just perceptrons ( $d_{VC} = 3$ )
- ρ > √3/2: cannot shatter any 3 inputs (d<sub>VC</sub> < 3) —some inputs must be of distance < √3</li>



generally, when  $\mathcal{X}$  in radius-R hyperball:

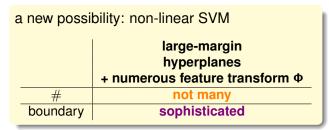
$$d_{\rm VC}(\mathcal{A}_{\rho}) \leq \min\left(\frac{R^2}{\rho^2}, d\right) + 1 \leq \underbrace{d_{\rm VC}({\sf perceptrons})}_{d_{\rm VC}({\sf perceptrons})}$$

Hsuan-Tien Lin (NTU CSIE)

### Benefits of Large-Margin Hyperplanes

|          | large-margin<br>hyperplanes | hyperplanes | hyperplanes<br>+ feature transform ${f \Phi}$ |
|----------|-----------------------------|-------------|-----------------------------------------------|
| #        | even fewer                  | not many    | many                                          |
| boundary | simple                      | simple      | sophisticated                                 |

- **not many** good, for  $d_{VC}$  and generalization
- sophisticated good, for possibly better E<sub>in</sub>



Hsuan-Tien Lin (NTU CSIE)

Consider running the 'large-margin algorithm'  $\mathcal{A}_{\rho}$  with  $\rho = \frac{1}{4}$  on a  $\mathcal{Z}$ -space such that  $\mathbf{z} = \mathbf{\Phi}(\mathbf{x})$  is of 1126 dimensions (excluding  $z_0$ ) and  $\|\mathbf{z}\| \leq 1$ . What is the upper bound of  $d_{vc}(\mathcal{A}_{\rho})$  when calculated by min  $\left(\frac{R^2}{\rho^2}, d\right) + 1$ ? 1 5 2 17 3 1126 4 1127

Consider running the 'large-margin algorithm'  $\mathcal{A}_{\rho}$  with  $\rho = \frac{1}{4}$  on a  $\mathcal{Z}$ -space such that  $\mathbf{z} = \mathbf{\Phi}(\mathbf{x})$  is of 1126 dimensions (excluding  $z_0$ ) and  $\|\mathbf{z}\| \leq 1$ . What is the upper bound of  $d_{VC}(\mathcal{A}_{\rho})$  when calculated by  $\min\left(\frac{R^2}{\rho^2}, d\right) + 1$ ? 1 5 2 17 3 1126 4 1127

### Reference Answer: (2)

By the description, d = 1126 and R = 1. So the upper bound is simply 17.

# Summary

### 1 Embedding Numerous Features: Kernel Models

### Lecture 1: Linear Support Vector Machine

Course Introduction

#### from foundations to techniques

- Large-Margin Separating Hyperplane intuitively more robust against noise
- Standard Large-Margin Problem
- minimize 'length of w' at special separating scale
  - Support Vector Machine

### 'easy' via quadratic programming

- Reasons behind Large-Margin Hyperplane fewer dichotomies and better generalization
- next: solving non-linear Support Vector Machine
- 2 Combining Predictive Features: Aggregation Models3 Distilling Implicit Features: Extraction Models