

Lecture 16: Three Learning Principles

Hsuan-Tien Lin (林軒田) htlin@csie.ntu.edu.tw

Department of Computer Science & Information Engineering

National Taiwan University (國立台灣大學資訊工程系)

Roadmap

- 1 When Can Machines Learn?
- 2 Why Can Machines Learn?
- 3 How Can Machines Learn?
- 4 How Can Machines Learn Better?

Lecture 15: Validation

(crossly) reserve validation data to simulate testing procedure for model selection

Lecture 16: Three Learning Principles

- Occam's Razor
- Sampling Bias
- Data Snooping
- Power of Three

Occam's Razor

An explanation of the data should be made as simple as possible, but no simpler.—Albert Einstein? (1879-1955)

entia non sunt multiplicanda praeter necessitatem (entities must not be multiplied **beyond necessity**) —William of Occam (1287-1347)

'Occam's razor' for trimming down unnecessary explanation

figure by Fred the Oyster (Own work) [CC-BY-SA-3.0], via Wikimedia Commons

Occam's Razor

Occam's Razor for Learning

The simplest model that fits the data is also the most plausible.

two questions:

What does it mean for a model to be simple?

2 How do we know that simpler is better?

Simple Model

simple hypothesis h

- small $\Omega(h) =$ 'looks' simple
- specified by few parameters

simple model \mathcal{H}

- small $\Omega(\mathcal{H}) = \text{not many}$
- contains small number of hypotheses

connection

h specified by
$$\ell$$
 bits $\leftarrow |\mathcal{H}|$ of size 2^{ℓ}

```
small \Omega(h) \Leftarrow small \Omega(\mathcal{H})
```

simple: small hypothesis/model complexity

Simple is Better

in addition to math proof that you have seen, philosophically: simple $\ensuremath{\mathcal{H}}$

- \implies smaller $m_{\mathcal{H}}(N)$
- \implies less 'likely' to fit data perfectly $\frac{m_{\mathcal{H}}(N)}{2^N}$
- \implies more significant when fit happens

direct action: linear first; always ask whether data over-modeled

Hsuan-Tien Lin (NTU CSIE)

Machine Learning Foundations

Consider the decision stumps in \mathbb{R}^1 as the hypothesis set \mathcal{H} . Recall that $m_{\mathcal{H}}(N) = 2N$. Consider 10 different inputs $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_{10}$ coupled with labels y_n generated iid from a fair coin. What is the probability that the data $\mathcal{D} = \{(\mathbf{x}_n, y_n)\}_{n=1}^{10}$ is separable by \mathcal{H} ?

Consider the decision stumps in \mathbb{R}^1 as the hypothesis set \mathcal{H} . Recall that $m_{\mathcal{H}}(N) = 2N$. Consider 10 different inputs $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_{10}$ coupled with labels y_n generated iid from a fair coin. What is the probability that the data $\mathcal{D} = \{(\mathbf{x}_n, y_n)\}_{n=1}^{10}$ is separable by \mathcal{H} ?

Reference Answer: (3)

Of all 1024 possible \mathcal{D} , only 2N = 20 of them is separable by \mathcal{H} .

Sampling Bias

Presidential Story

- 1948 US President election: Truman versus Dewey
- a newspaper phone-poll of how people voted, and set the title 'Dewey Defeats Truman' based on polling

who is this? :-)

Hsuan-Tien Lin (NTU CSIE)

Machine Learning Foundations

Three Learning Principles

Sampling Bias

The Big Smile Came from ...

Truman, and yes he won

suspect of the mistake:

- editorial bug?—no
- bad luck of polling (δ)?—no

hint: phones were expensive :-)

Hsuan-Tien Lin (NTU CSIE)

Machine Learning Foundations

Sampling Bias

If the data is sampled in a biased way, learning will produce a similarly biased outcome.

- technical explanation: data from P₁(**x**, y) but test under P₂ ≠ P₁: VC fails
- philosophical explanation: study Math hard but test English: no strong test guarantee

'minor' VC assumption: data and testing **both iid from** *P* Three Learning Principles

Sampling Bias

Sampling Bias in Learning

validation: random examples within D; test: 'last' user records 'after' D Sampling Bias

Dealing with Sampling Bias

If the data is sampled in a biased way, learning will produce a similarly biased outcome.

- practical rule of thumb: match test scenario as much as possible
- e.g. if test: 'last' user records 'after' ${\cal D}$
 - training: emphasize later examples (KDDCup 2011)
 - validation: use 'late' user records

last puzzle:

danger when learning 'credit card approval' with existing bank records?

If the data \mathcal{D} is an unbiased sample from the underlying distribution P for binary classification, which of the following subset of \mathcal{D} is also an unbiased sample from P?

- **1** all the positive $(y_n > 0)$ examples
- Palf of the examples that are randomly and uniformly picked from *D* without replacement
- **(3)** half of the examples with the smallest $\|\mathbf{x}_n\|$ values
- 4 the largest subset that is linearly separable

If the data \mathcal{D} is an unbiased sample from the underlying distribution P for binary classification, which of the following subset of \mathcal{D} is also an unbiased sample from P?

- **1** all the positive $(y_n > 0)$ examples
- Palf of the examples that are randomly and uniformly picked from *D* without replacement
- **(3)** half of the examples with the smallest $\|\mathbf{x}_n\|$ values
- 4 the largest subset that is linearly separable

Reference Answer: (2)

That's how we form the validation set, remember? :-)

Data Snooping

Visual Data Snooping

Visualize $\mathcal{X} = \mathbb{R}^2$

- full Φ_2 : $\mathbf{z} = (1, x_1, x_2, x_1^2, x_1 x_2, x_2^2), d_{VC} = 6$
- or $z = (1, x_1^2, x_2^2), d_{VC} = 3$, after visualizing?
- or better ${f z} = (1, x_1^2 + x_2^2)$, $d_{
 m VC} = 2?$
- or even better $\mathbf{z} = (\text{sign}(0.6 x_1^2 x_2^2))$?

-careful about your brain's 'model complexity'

for VC-safety, Φ shall be decided without 'snooping' data

Data Snooping by Mere Shifting-Scaling

If a data set has affected any step in the learning process, its ability to assess the outcome has been compromised.

- 8 years of currency trading data
- first 6 years for training, last two 2 years for testing
- **x** = previous 20 days, *y* = 21th day
- snooping versus no snooping: superior profit possible

- snooping: shift-scale all values by training + testing
- no snooping: shift-scale all values by training only

. . .

Data Snooping by Data Reusing

Research Scenario

benchmark data $\ensuremath{\mathcal{D}}$

- paper 1: propose \mathcal{H}_1 that works well on \mathcal{D}
- paper 2: find room for improvement, propose H₂
 —and publish only if better than H₁ on D
- paper 3: find room for improvement, propose H₃
 —and publish only if better than H₂ on D

- if all papers from the same author in one big paper: bad generalization due to d_{VC}(∪_mH_m)
- step-wise: later author **snooped** data by reading earlier papers, bad generalization worsen by **publish only if better**

if you torture the data long enough, it will confess :-)

Hsuan-Tien Lin (NTU CSIE)

Machine Learning Foundations

Data Snooping

Dealing with Data Snooping

- truth-very hard to avoid, unless being extremely honest
- extremely honest: lock your test data in safe
- Iess honest: reserve validation and use cautiously
- be blind: avoid making modeling decision by data
- be suspicious: interpret research results (including your own) by proper feeling of contamination

one secret to winning KDDCups:

careful balance between data-driven modeling (snooping) and validation (no-snooping)

Which of the following can result in unsatisfactory test performance in machine learning?

- data snooping
- 2 overfitting
- 3 sampling bias
- 4 all of the above

Which of the following can result in unsatisfactory test performance in machine learning?

- data snooping
- 2 overfitting
- 3 sampling bias
- 4 all of the above

Reference Answer: (4)

A professional like you should be aware of those! :-)

Three Related Fields

Data Mining	Artificial Intelligence	Statistics
 use (huge) data to find property that is interesting 	 compute something that shows intelligent behavior 	 use data to make inference about an unknown process
 difficult to distinguish ML and DM in reality 	 ML is one possible route to realize AI 	 statistics contains many useful tools for ML

Three Theoretical Bounds

Hoeffding	Multi-Bin Hoeffding	VC
$P[BAD] \le 2 \exp(-2\epsilon^2 N)$	$P[BAD] \le 2M \exp(-2\epsilon^2 N)$	$P[BAD] \le 4m_{\mathcal{H}}(2N) \exp(\ldots)$
 one hypothesis useful for verifying/testing 	 <i>M</i> hypotheses useful for validation 	 all <i>H</i> useful for training

Three Linear Models

PLA/pocket	linear regression	logistic regression
$h(\mathbf{x}) = \operatorname{sign}(s)$	$h(\mathbf{x}) = s$	$h(\mathbf{x})= heta(s)$
x_0	x_0	x_0
x_1	x_1	x_1
x_2	x_2	x_2
x_d $h(\mathbf{x})$	x_d $h(\mathbf{x})$	x_d $h(\mathbf{x})$
plausible err = 0/1	friendly err = squared	plausible err = CE
(small flipping noise)	(easy to minimize)	(maximum likelihood)
minimize specially	minimize analytically	minimize iteratively

Three Key Tools

Feature Transform	Regularization	Validation
$egin{array}{rcl} E_{\sf in}({f w}) & o & E_{\sf in}(ilde{f w}) \ d_{\sf VC}({\cal H}) & o & d_{\sf VC}({\cal H}_{f \Phi}) \end{array}$	$egin{array}{rcl} E_{ ext{in}}(oldsymbol{w}) & o & E_{ ext{in}}(oldsymbol{w}_{ ext{REG}}) \ d_{ ext{vc}}(\mathcal{H}) & o & d_{ ext{EFF}}(\mathcal{H},\mathcal{A}) \end{array}$	$egin{array}{rcl} E_{ ext{in}}(h) & o & E_{ ext{val}}(h) \ \mathcal{H} & o & \{ g_1^-, \dots, g_M^- \} \end{array}$
 by using more complicated Φ lower E_{in} higher d_{vc} 	 by augmenting regularizer Ω lower d_{EFF} higher E_{in} 	 by reserving K examples as D_{val} fewer choices fewer examples

Three Learning Principles

Power of Three

Three Learning Principles

Occam's Razer	Sampling Bias	Data Snooping
simple is good	class matches exam	honesty is best policy

Three Learning Principles

Three Future Directions

Power of Three

ready for the jungle!

Hsuan-Tien Lin (NTU CSIE)

Machine Learning Foundations

What are the magic numbers that repeatedly appear in this class?

- **1** 3
- 2 1126
- 3 both 3 and 1126
- 4 neither 3 nor 1126

What are the magic numbers that repeatedly appear in this class?

- **1** 3
- 2 1126
- 3 both 3 and 1126
- 4 neither 3 nor 1126

Reference Answer: (3)

3 as illustrated, and you may recall 1126 somewhere :-)

Summary

- 1 When Can Machines Learn?
- 2 Why Can Machines Learn?
- 3 How Can Machines Learn?
- 4 How Can Machines Learn Better?

• next: ready for jungle!