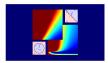
Machine Learning Foundations

(機器學習基石)



Lecture 15: Validation

Hsuan-Tien Lin (林軒田)

htlin@csie.ntu.edu.tw

Department of Computer Science & Information Engineering

National Taiwan University (國立台灣大學資訊工程系)

Roadmap

- 1 When Can Machines Learn?
- 2 Why Can Machines Learn?
- 3 How Can Machines Learn?
- 4 How Can Machines Learn Better?

Lecture 14: Regularization

minimizes augmented error, where the added regularizer effectively limits model complexity

Lecture 15: Validation

- Model Selection Problem
- Validation
- Leave-One-Out Cross Validation
- V-Fold Cross Validation

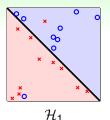
So Many Models Learned

Even Just for Binary Classification

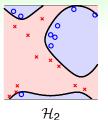
$$\mathcal{A} \in \{ \text{ PLA, pocket, linear regression, logistic regression} \} \\ \times \\ T \in \{ 100, 1000, 10000 \} \\ \times \\ \eta \in \{ 1, 0.01, 0.0001 \} \\ \times \\ \Phi \in \{ \text{ linear, quadratic, poly-10, Legendre-poly-10} \} \\ \times \\ \Omega(\mathbf{w}) \in \{ \text{ L2 regularizer, L1 regularizer, symmetry regularizer} \} \\ \times \\ \lambda \in \{ 0, 0.01, 1 \}$$

in addition to your favorite combination, may need to try other combinations to get a good g

Model Selection Problem



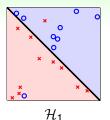
which one do you prefer? :-)



- , ,
- given: M models \$\mathcal{H}_1, \mathcal{H}_2, \ldots, \mathcal{H}_M\$, each with corresponding algorithm \$\mathcal{A}_1, \mathcal{A}_2, \ldots, \mathcal{A}_M\$
- goal: select \mathcal{H}_{m^*} such that $g_{m^*} = \mathcal{A}_{m^*}(\mathcal{D})$ is of low $E_{\mathrm{out}}(g_{m^*})$
- unknown E_{out} due to unknown $P(\mathbf{x}) \& P(y|\mathbf{x})$, as always :-)
- arguably the most important practical problem of ML

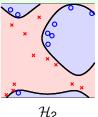
how to select? visually?
—no, remember Lecture 12? :-)

Model Selection by Best E_{in}



select by best Ein?

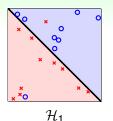
$$m^* = \underset{1 \le m \le M}{\operatorname{argmin}} (E_m = \underline{E}_{in}(\mathcal{A}_m(\mathcal{D})))$$



- Φ₁₁₂₆ always more preferred over Φ₁; $\lambda = 0$ always more preferred over $\lambda = 0.1$ —overfitting?
- if A_1 minimizes E_{in} over \mathcal{H}_1 and A_2 minimizes E_{in} over \mathcal{H}_2 ,
 - $\Longrightarrow q_{m^*}$ achieves minimal E_{in} over $\mathcal{H}_1 \cup \mathcal{H}_2$
 - \implies 'model selection + learning' pays $d_{VC}(\mathcal{H}_1 \cup \mathcal{H}_2)$
 - —bad generalization?

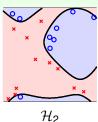
selecting by E_{in} is dangerous

Model Selection by Best E_{test}



select by best E_{test}, which is evaluated on a fresh \mathcal{D}_{test} ?

$$m^* = \underset{1 \le m \le M}{\operatorname{argmin}} (E_m = E_{\text{test}}(\mathcal{A}_m(\mathcal{D})))$$



generalization guarantee (finite-bin Hoeffding):

$$E_{\mathsf{out}}(g_{m^*}) \leq E_{\mathsf{test}}(g_{m^*}) + O\left(\sqrt{rac{\log M}{N_{\mathsf{test}}}}
ight)$$

- —yes! strong guarantee :-)
- but where is \mathcal{D}_{test} ?—your boss's safe, maybe? :-(

selecting by Etest is infeasible and cheating

Comparison between E_{in} and E_{test}

in-sample error Ein

- calculated from D
- feasible on hand
- 'contaminated' as \mathcal{D} also used by \mathcal{A}_m to 'select' g_m

test error E_{test}

- calculated from $\mathcal{D}_{\text{test}}$
- infeasible in boss's safe
- 'clean' as D_{test} never used for selection before

something in between: E_{val}

- calculated from $\mathcal{D}_{\mathsf{val}} \subset \mathcal{D}$
- feasible on hand
- 'clean' if \mathcal{D}_{val} never used by \mathcal{A}_m before

selecting by E_{val} : legal cheating:-)

For $\mathcal{X}=\mathbb{R}^d$, consider two hypothesis sets, \mathcal{H}_+ and \mathcal{H}_- . The first hypothesis set contains all perceptrons with $w_1\geq 0$, and the second hypothesis set contains all perceptrons with $w_1\leq 0$. Denote g_+ and g_- as the minimum- E_{in} hypothesis in each hypothesis set, respectively. Which statement below is true?

- 1 If $E_{in}(g_+) < E_{in}(g_-)$, then g_+ is the minimum- E_{in} hypothesis of all perceptrons in \mathbb{R}^d .
- ② If $E_{\text{test}}(g_+) < E_{\text{test}}(g_-)$, then g_+ is the minimum- E_{test} hypothesis of all perceptrons in \mathbb{R}^d .
- The two hypothesis sets are disjoint.
- 4 None of the above

For $\mathcal{X}=\mathbb{R}^d$, consider two hypothesis sets, \mathcal{H}_+ and \mathcal{H}_- . The first hypothesis set contains all perceptrons with $w_1\geq 0$, and the second hypothesis set contains all perceptrons with $w_1\leq 0$. Denote g_+ and g_- as the minimum- E_{in} hypothesis in each hypothesis set, respectively. Which statement below is true?

- 1 If $E_{in}(g_+) < E_{in}(g_-)$, then g_+ is the minimum- E_{in} hypothesis of all perceptrons in \mathbb{R}^d .
- ② If $E_{\text{test}}(g_+) < E_{\text{test}}(g_-)$, then g_+ is the minimum- E_{test} hypothesis of all perceptrons in \mathbb{R}^d .
- The two hypothesis sets are disjoint.
- 4 None of the above

Reference Answer: 1

Note that the two hypothesis sets are not disjoint (sharing ' $w_1 = 0$ ' perceptrons) but their union is all perceptrons.

Validation Set \mathcal{D}_{val}

$$E_{\text{in}}(h) \qquad \qquad E_{\text{val}}(h)$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$\downarrow \mathcal{D} \qquad \rightarrow \qquad \underbrace{\mathcal{D}_{\text{train}}}_{\text{size } N-K} \qquad \cup \qquad \underbrace{\mathcal{D}_{\text{val}}}_{\text{size } K}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$g_m = \mathcal{A}_m(\mathcal{D}) \qquad g_m^- = \mathcal{A}_m(\mathcal{D}_{\text{train}})$$

- $\mathcal{D}_{val} \subset \mathcal{D}$: called **validation set**—'on-hand' simulation of test set
- to connect E_{val} with E_{out} : $\mathcal{D}_{\text{val}} \stackrel{\textit{iid}}{\sim} P(\mathbf{x}, \mathbf{y}) \iff \text{select } K \text{ examples from } \mathcal{D} \text{ at random}$
- to make sure \mathcal{D}_{val} 'clean': feed only $\mathcal{D}_{\text{train}}$ to \mathcal{A}_m for model selection

$$E_{\mathsf{out}}(\underline{g_m^-}) \leq E_{\mathsf{val}}(\underline{g_m^-}) + O\left(\sqrt{rac{\log M}{K}}
ight)$$

Model Selection by Best E_{val}

$$m^* = \underset{1 \leq m \leq M}{\operatorname{argmin}}(E_m = E_{\text{val}}(\mathcal{A}_m(\mathcal{D}_{\text{train}})))$$

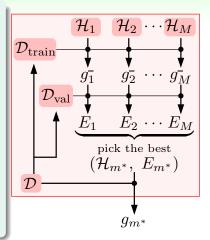
generalization guarantee for all m:

$$E_{\mathsf{out}}(\underline{g_m^-}) \leq E_{\mathsf{val}}(\underline{g_m^-}) + O\left(\sqrt{\frac{\log M}{K}}\right)$$

heuristic gain from N – K to N:

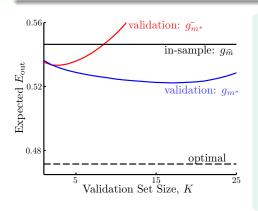
$$E_{ ext{out}}\left(\underbrace{oldsymbol{g_{m^*}}}_{\mathcal{A}_{m^*}(\mathcal{D})}
ight) \leq E_{ ext{out}}\left(\underbrace{oldsymbol{g_{m^*}}}_{\mathcal{A}_{m^*}(\mathcal{D}_{ ext{train}})}
ight)$$

-learning curve, remember? :-)



$$E_{\mathrm{out}}(g_{m^*}) \leq E_{\mathrm{out}}(g_{m^*}^-) \leq E_{\mathrm{val}}(g_{m^*}^-) + O\left(\sqrt{\frac{\log M}{K}}\right)$$

use validation to select between \mathcal{H}_{Φ_5} and $\mathcal{H}_{\Phi_{10}}$



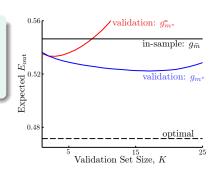
- in-sample: selection with E_{in}
- optimal: cheating-selection with *E*_{test}
- sub-g: selection with E_{val}
 and report g_{m*}
- full-g: selection with E_{val} and report g_{m*}
 —E_{out}(g_{m*}) ≤ E_{out}(g⁻_{m*}) indeed

why is sub-g worse than in-sample some time?

The Dilemma about K

reasoning of validation:

- large K: every $E_{\text{val}} \approx E_{\text{out}}$, but all g_m^- much worse than g_m
- small K: every g_m⁻ ≈ g_m, but E_{val} far from E_{out}



practical rule of thumb: $K = \frac{N}{5}$

For a learning model that takes N^2 seconds of training when using N examples, what is the total amount of seconds needed when running the whole validation procedure with $K = \frac{N}{5}$ on 25 such models with different parameters to get the final g_{m^*} ?

- $0 6N^2$
- $2 17N^2$
- $3 25N^2$
- $4 26N^2$

For a learning model that takes N^2 seconds of training when using N examples, what is the total amount of seconds needed when running the whole validation procedure with $K = \frac{N}{5}$ on 25 such models with different parameters to get the final g_{m^*} ?

- $0.6N^2$
- $217N^2$
- $3 25N^2$
- $4 26N^2$

Reference Answer: (2)

To get all the g_m^- , we need $\frac{16}{25}N^2 \cdot 25$ seconds. Then to get g_{m^*} , we need another N^2 seconds. So in total we need $17N^2$ seconds.

Extreme Case: K = 1

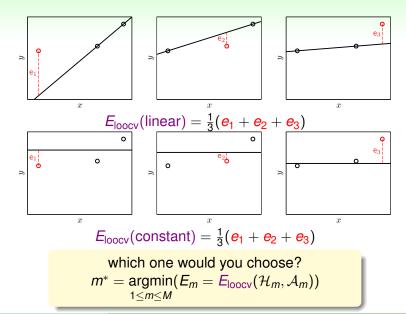
reasoning of validation:

- take K=1? $\mathcal{D}_{\text{val}}^{(n)}=\{(\mathbf{x}_n,y_n)\}$ and $\mathbf{E}_{\text{val}}^{(n)}(\mathbf{g}_n^-)=\operatorname{err}(\mathbf{g}_n^-(\mathbf{x}_n),y_n)=e_n$
- make e_n closer to $E_{\text{out}}(g)$?—average over possible $E_{\text{val}}^{(n)}$
- leave-one-out cross validation estimate:

$$E_{\text{loocv}}(\mathcal{H}, \mathcal{A}) = \frac{1}{N} \sum_{n=1}^{N} e_n = \frac{1}{N} \sum_{n=1}^{N} \text{err}(g_n^{-}(\mathbf{x}_n), y_n)$$

hope: $E_{loocy}(\mathcal{H}, \mathcal{A}) \approx E_{out}(g)$

Illustration of Leave-One-Out



Theoretical Guarantee of Leave-One-Out Estimate

does $E_{loocv}(\mathcal{H}, \mathcal{A})$ say something about $E_{out}(g)$? yes, for average E_{out} on size-(N-1) data

$$\mathcal{E}_{\mathcal{D}} E_{loocv}(\mathcal{H}, \mathcal{A}) = \mathcal{E}_{\mathcal{D}} \frac{1}{N} \sum_{n=1}^{N} e_{n} = \frac{1}{N} \sum_{n=1}^{N} \mathcal{E}_{\mathcal{D}} e_{n}$$

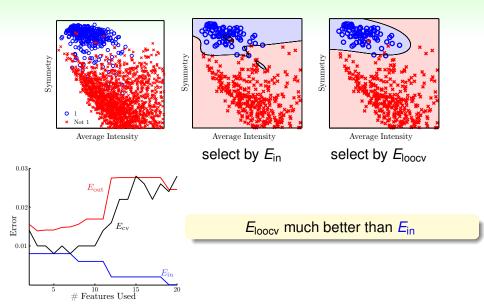
$$= \frac{1}{N} \sum_{n=1}^{N} \frac{\mathcal{E}}{\mathcal{D}_{n}(\mathbf{x}_{n}, \mathbf{y}_{n})} err(\mathbf{g}_{n}^{-}(\mathbf{x}_{n}), \mathbf{y}_{n})$$

$$= \frac{1}{N} \sum_{n=1}^{N} \frac{\mathcal{E}}{\mathcal{D}_{n}} E_{out}(\mathbf{g}_{n}^{-})$$

$$= \frac{1}{N} \sum_{n=1}^{N} \overline{E_{out}}(N-1) = \overline{E_{out}}(N-1)$$

expected $E_{\text{loocv}}(\mathcal{H}, \mathcal{A})$ says something about expected $E_{\text{out}}(g^-)$ —often called 'almost unbiased estimate of $E_{\text{out}}(g)$ '

Leave-One-Out in Practice



Consider three examples $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), (\mathbf{x}_3, y_3)$ with $y_1 = 1$, $y_2 = 5$, $y_3 = 7$. If we use E_{loocv} to estimate the performance of a learning algorithm that predicts with the average y value of the data set—the optimal constant prediction with respect to the squared error. What is E_{loocv} (squared error) of the algorithm?

- **1** 0
- 2 <u>56</u> 9
- $\frac{60}{9}$
- **4** 14

Consider three examples $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), (\mathbf{x}_3, y_3)$ with $y_1 = 1$, $y_2 = 5$, $y_3 = 7$. If we use E_{loocv} to estimate the performance of a learning algorithm that predicts with the average y value of the data set—the optimal constant prediction with respect to the squared error. What is E_{loocv} (squared error) of the algorithm?

- **①** 0
- $\frac{56}{9}$
- $\frac{60}{9}$
- **4** 14

Reference Answer: (4)

This is based on a simple calculation of $e_1 = (1-6)^2$, $e_2 = (5-4)^2$, $e_3 = (7-3)^2$.

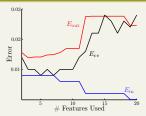
Disadvantages of Leave-One-Out Estimate

Computation

$$E_{\text{loocv}}(\mathcal{H}, \mathcal{A}) = \frac{1}{N} \sum_{n=1}^{N} e_n = \frac{1}{N} \sum_{n=1}^{N} \text{err}(g_n^-(\mathbf{x}_n), y_n)$$

- N 'additional' training per model, not always feasible in practice
- except 'special case' like analytic solution for linear regression

Stability—due to variance of single-point estimates



 E_{loocv} : not often used practically

V-fold Cross Validation

how to decrease computation need for cross validation?

- essence of leave-one-out cross validation: partition $\mathcal D$ to N parts, taking N-1 for training and 1 for validation orderly
- V-fold cross-validation: random-partition of \mathcal{D} to V equal parts,

take V-1 for training and 1 for validation orderly

$$E_{\text{cv}}(\mathcal{H}, \mathcal{A}) = \frac{1}{V} \sum_{v=1}^{V} E_{\text{val}}^{(v)}(g_v^-)$$

• selection by E_{cv} : $m^* = \underset{1 \le m \le M}{\operatorname{argmin}} (E_m = E_{cv}(\mathcal{H}_m, \mathcal{A}_m))$

practical rule of thumb: V = 10

Final Words on Validation

'Selecting' Validation Tool

- V-Fold generally preferred over single validation if computation allows
- 5-Fold or 10-Fold generally works well:
 not necessary to trade V-Fold with Leave-One-Out

Nature of Validation

- all training models: select among hypotheses
- all validation schemes: select among finalists
- all testing methods: just evaluate

validation still more optimistic than testing

do not fool yourself and others :-), report test result, not best validation result

For a learning model that takes N^2 seconds of training when using N examples, what is the total amount of seconds needed when running 10-fold cross validation on 25 such models with different parameters to get the final g_{m^*} ?

- $1 \frac{47}{2} N^2$
- $247N^2$
- $\frac{407}{2}N^2$
- $407N^2$

For a learning model that takes N^2 seconds of training when using N examples, what is the total amount of seconds needed when running 10-fold cross validation on 25 such models with different parameters to get the final g_{m^*} ?

- $\frac{47}{2}N^2$
- $247N^2$
- $\frac{407}{2}N^2$
- $407N^2$

Reference Answer: (3)

To get all the $E_{\rm cv}$, we need $\frac{81}{100}N^2 \cdot 10 \cdot 25$ seconds. Then to get g_{m^*} , we need another N^2 seconds. So in total we need $\frac{407}{2}N^2$ seconds.

Summary

- 1 When Can Machines Learn?
- 2 Why Can Machines Learn?
- 3 How Can Machines Learn?
- 4 How Can Machines Learn Better?

Lecture 14: Regularization

Lecture 15: Validation

- Model Selection Problem dangerous by E_{in} and dishonest by E_{test}
- Validation

select with $E_{\text{val}}(\mathcal{A}_m(\mathcal{D}_{\text{train}}))$ while returning $\mathcal{A}_{m^*}(\mathcal{D})$

Leave-One-Out Cross Validation

huge computation for almost unbiased estimate

- V-Fold Cross Validation
 reasonable computation and performance
- next: something 'up my sleeve'