Machine Learning Foundations

（機器學習基石）

Lecture 5：Training versus Testing
Hsuan－Tien Lin（林軒田）

htlin＠csie．ntu．edu．tw

Department of Computer Science
\＆Information Engineering
National Taiwan University
（國立台灣大學資訊工程系）

Roadmap

(1) When Can Machines Learn?

Lecture 4: Feasibility of Learning
learning is PAC-possible if enough statistical data and finite $|\mathcal{H}|$
(2) Why Can Machines Learn?

Lecture 5: Training versus Testing

- Recap and Preview
- Effective Number of Lines
- Effective Number of Hypotheses
- Break Point
(3) How Can Machines Learn?

4 How Can Machines Learn Better?

Recap: the 'Statistical’ Learning Flow

if $|\mathcal{H}|=M$ finite, N large enough, for whatever g picked by $\mathcal{A}, E_{\text {out }}(g) \approx E_{\text {in }}(g)$
if \mathcal{A} finds one g with $E_{\text {in }}(g) \approx 0$, PAC guarantee for $E_{\text {out }}(g) \approx 0 \Longrightarrow$ learning possible :-)

Two Central Questions

for $\underbrace{\text { batch \& supervised binary classification }}_{\text {lecture } 3}, \underbrace{g \approx f}_{\text {lecture } 1} \Longleftrightarrow E_{\text {out }}(g) \approx 0$
achieved through $\underbrace{E_{\text {out }}(g) \approx E_{\text {in }}(g)}_{\text {lecture } 4}$ and $\underbrace{E_{\text {in }}(g) \approx 0}_{\text {lecture 2 }}$
learning split to two central questions:
(1) can we make sure that $E_{\text {out }}(g)$ is close enough to $E_{\text {in }}(g)$?
(2) can we make $E_{\text {in }}(g)$ small enough?
what role does $\underbrace{M}_{|\mathcal{H}|}$ play for the two questions?

Trade-off on M

(1) can we make sure that $E_{\text {out }}(g)$ is close enough to $E_{\text {in }}(g)$?
(2) can we make $E_{\text {in }}(g)$ small enough?

small M

(1) Yes!,
$\mathbb{P}[$ BAD $] \leq 2 \cdot M \cdot \exp (\ldots)$
(2) No!, too few choices

large M

(1) No!,
$\mathbb{P}[$ BAD $] \leq 2 \cdot M \cdot \exp (\ldots)$
(2) Yes!, many choices
using the right M (or $\mathcal{H})$ is important $M=\infty$ doomed?

Preview

Known

$$
\mathbb{P}\left[\left|E_{\text {in }}(g)-E_{\text {out }}(g)\right|>\epsilon\right] \leq 2 \cdot M \cdot \exp \left(-2 \epsilon^{2} N\right)
$$

Todo

- establish a finite quantity that replaces M

$$
\mathbb{P}\left[\left|E_{\text {in }}(g)-E_{\text {out }}(g)\right|>\epsilon\right] \stackrel{?}{\leq} 2 \cdot m_{\mathcal{H}} \cdot \exp \left(-2 \epsilon^{2} N\right)
$$

- justify the feasibility of learning for infinite M
- study $m_{\mathcal{H}}$ to understand its trade-off for 'right' \mathcal{H}, just like M

mysterious PLA to be fully resolved after 3 more lectures :-)

Fun Time

Data size: how large do we need?

One way to use the inequality

$$
\mathbb{P}\left[\left|E_{\text {in }}(g)-E_{\text {out }}(g)\right|>\epsilon\right] \leq \underbrace{2 \cdot M \cdot \exp \left(-2 \epsilon^{2} N\right)}_{\delta}
$$

is to pick a tolerable difference ϵ as well as a tolerable BAD probability δ, and then gather data with size (N) large enough to achieve those tolerance criteria. Let $\epsilon=0.1, \delta=0.05$, and $M=100$. What is the data size needed?
(1) 215
(2) 415
(3) 615
(4) 815

Reference Answer: (2)

We can simply express N as a function of those 'known' variables. Then, the needed $N=\frac{1}{2 \epsilon^{2}} \ln \frac{2 M}{\delta}$.

Where Did M Come From?

$$
\mathbb{P}\left[\left|E_{\text {in }}(g)-E_{\text {out }}(g)\right|>\epsilon\right] \leq 2 \cdot M \cdot \exp \left(-2 \epsilon^{2} N\right)
$$

- BAD events $\mathcal{B}_{m}:\left|E_{\text {in }}\left(h_{m}\right)-E_{\text {out }}\left(h_{m}\right)\right|>\epsilon$
- to give \mathcal{A} freedom of choice: bound $\mathbb{P}\left[\mathcal{B}_{1}\right.$ or \mathcal{B}_{2} or $\left.\ldots \mathcal{B}_{M}\right]$
- worst case: all \mathcal{B}_{m} non-overlapping

$$
\mathbb{P}\left[\mathcal{B}_{1} \text { or } \mathcal{B}_{2} \text { or } \ldots \mathcal{B}_{M}\right] \underbrace{\leq}_{\text {union bound }} \mathbb{P}\left[\mathcal{B}_{1}\right]+\mathbb{P}\left[\mathcal{B}_{2}\right]+\ldots+\mathbb{P}\left[\mathcal{B}_{M}\right]
$$

where did uniform bound fail to consider for $M=\infty$?

Where Did Uniform Bound Fail?

 union bound $\mathbb{P}\left[\mathcal{B}_{1}\right]+\mathbb{P}\left[\mathcal{B}_{2}\right]+\ldots+\mathbb{P}\left[\mathcal{B}_{M}\right]$- BAD events $\mathcal{B}_{m}:\left|E_{\text {in }}\left(h_{m}\right)-E_{\text {out }}\left(h_{m}\right)\right|>\epsilon$ overlapping for similar hypotheses $h_{1} \approx h_{2}$
- why? (1) $E_{\text {out }}\left(h_{1}\right) \approx E_{\text {out }}\left(h_{2}\right)$
(2) for most $\mathcal{D}, E_{\text {in }}\left(h_{1}\right)=E_{\text {in }}\left(h_{2}\right)$
- union bound over-estimating

to account for overlap, can we group similar hypotheses by kind?

How Many Lines Are There? (1/2)

$$
\mathcal{H}=\left\{\text { all lines in } \mathbb{R}^{2}\right\}
$$

- how many lines? ∞
- how many kinds of lines if viewed from one input vector \mathbf{x}_{1} ?

2 kinds: h_{1}-like $\left(\mathbf{x}_{1}\right)=\circ$ or h_{2}-like $\left(\mathbf{x}_{1}\right)=\times$

How Many Lines Are There? (1/2)

$$
\mathcal{H}=\left\{\text { all lines in } \mathbb{R}^{2}\right\}
$$

- how many lines? ∞
- how many kinds of lines if viewed from one input vector \mathbf{x}_{1} ?

2 kinds: h_{1}-like $\left(\mathbf{x}_{1}\right)=0$ or h_{2}-like $\left(\mathbf{x}_{1}\right)=x$

How Many Lines Are There? (2/2)

$$
\mathcal{H}=\left\{\text { all lines in } \mathbb{R}^{2}\right\}
$$

- how many kinds of lines if viewed from two inputs $\mathbf{x}_{1}, \mathbf{x}_{2}$?

one input: 2 ; two inputs: 4 ; three inputs?

How Many Lines Are There? (2/2)

$$
\mathcal{H}=\left\{\text { all lines in } \mathbb{R}^{2}\right\}
$$

- how many kinds of lines if viewed from two inputs $\mathbf{x}_{1}, \mathbf{x}_{2}$?

one input: 2 ; two inputs: 4 ; three inputs?

How Many Kinds of Lines for Three Inputs? (1/2)

$$
\mathcal{H}=\left\{\text { all lines in } \mathbb{R}^{2}\right\}
$$

for three inputs $\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}$

always 8 for three inputs?

How Many Kinds of Lines for Three Inputs? (2/2)

$$
\mathcal{H}=\left\{\text { all lines in } \mathbb{R}^{2}\right\}
$$

'fewer than 8' when degenerate (e.g. collinear or same inputs)

How Many Kinds of Lines for Four Inputs?

$$
\mathcal{H}=\left\{\text { all lines in } \mathbb{R}^{2}\right\}
$$

for any four inputs at most 14

Effective Number of Lines

maximum kinds of lines with respect to N inputs $\mathbf{x}_{1}, \mathbf{x}_{2}, \cdots, \mathbf{x}_{N}$ \Longleftrightarrow effective number of lines

- must be $\leq 2^{N}$ (why?)
- finite 'grouping' of infinitely-many lines $\in \mathcal{H}$
- wish:

$$
\begin{aligned}
& \mathbb{P}\left[\left|E_{\text {in }}(g)-E_{\text {out }}(g)\right|>\epsilon\right] \\
\leq & 2 \cdot \operatorname{effective}(N) \cdot \exp \left(-2 \epsilon^{2} N\right)
\end{aligned}
$$

lines in 2D

N	effective (N)
1	2
2	4
3	8
4	$14<2^{N}$

if 1 effective (N) can replace M and
(2) effective $(N) \ll 2^{N}$
learning possible with infinite lines :-)

Fun Time

What is the effective number of lines for five inputs $\in \mathbb{R}^{2}$?

(1) 14
(2) 16
(3) 22
(4) 32

Reference Answer: (3)

If you put the inputs roughly around a circle, you can then pick any consecutive inputs to be on one side of the line, and the other inputs to
$\bullet \mathbf{x}_{1}$ be on the other side. The procedure leads to effectively 22 kinds of lines, which is much smaller than $2^{5}=32$. You shall find it difficult to generate more kinds by varying the inputs, and we will give a formal proof in future lectures.

Dichotomies: Mini-hypotheses

$$
\mathcal{H}=\{\text { hypothesis } h: \mathcal{X} \rightarrow\{\times, \circ\}\}
$$

- call

$$
h\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N}\right)=\left(h\left(\mathbf{x}_{1}\right), h\left(\mathbf{x}_{2}\right), \ldots, h\left(\mathbf{x}_{N}\right)\right) \in\{\times, \circ\}^{N}
$$

a dichotomy: hypothesis 'limited' to the eyes of $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N}$

- $\mathcal{H}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N}\right)$:
all dichotomies 'implemented' by \mathcal{H} on $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N}$

	hypotheses \mathcal{H}	dichotomies $\mathcal{H}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N}\right)$
e.g.	all lines in \mathbb{R}^{2}	$\{0000,000 \times, \circ 0 \times \times, \ldots\}$
size	possibly infinite	upper bounded by 2^{N}

$\left|\mathcal{H}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N}\right)\right|:$ candidate for replacing M

Growth Function

- $\left|\mathcal{H}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N}\right)\right|$: depend on inputs $\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N}\right)$
- growth function: remove dependence by taking max of all possible ($\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N}$)

$$
m_{\mathcal{H}}(N)=\max _{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N} \in \mathcal{X}}\left|\mathcal{H}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N}\right)\right|
$$

lines in 2D

N	$m_{\mathcal{H}}(N)$
1	2
2	4
3	$\max (\ldots, 6,8)$ $=8$
4	$14<2^{N}$

- finite, upper-bounded by 2^{N}
how to 'calculate' the growth function?

Growth Function for Positive Rays

- $\mathcal{X}=\mathbb{R}$ (one dimensional)
- \mathcal{H} contains h, where each $h(x)=\operatorname{sign}(x-a)$ for threshold a
- 'positive half' of 1D perceptrons
one dichotomy for $a \in$ each spot $\left(x_{n}, x_{n+1}\right)$:

$$
m_{\mathcal{H}}(N)=N+1
$$

$$
(N+1) \ll 2^{N} \text { when } N \text { large! }
$$

Growth Function for Positive Intervals $h(x)=-1 \quad h(x)=+1 \quad h(x)=-1$

- $\mathcal{X}=\mathbb{R}$ (one dimensional)
- \mathcal{H} contains h, where each $h(x)=+1$ iff $x \in[\ell, r),-1$ otherwise one dichotomy for each 'interval kind'

$$
\begin{aligned}
m_{\mathcal{H}}(N) & =\underbrace{\binom{N+1}{2}}_{\text {interval ends in } N+1 \text { spots }}+\underbrace{1}_{\text {all } \times} \\
& =\frac{1}{2} N^{2}+\frac{1}{2} N+1
\end{aligned}
$$

$\left(\frac{1}{2} N^{2}+\frac{1}{2} N+1\right) \ll 2^{N}$ when N large!

Growth Function for Convex Sets (1/2)

convex region in blue

non-convex region

- $\mathcal{X}=\mathbb{R}^{2}$ (two dimensional)
- \mathcal{H} contains h, where $h(\mathbf{x})=+1$ iff \mathbf{x} in a convex region, -1 otherwise
what is $m_{\mathcal{H}}(N)$?

Growth Function for Convex Sets (2/2)

- one possible set of N inputs: $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N}$ on a big circle
- every dichotomy can be implemented by \mathcal{H} using a convex region slightly extended from contour of positive inputs

$$
m_{\mathcal{H}}(N)=2^{N}
$$

- call those N inputs 'shattered' by \mathcal{H}

$$
m_{\mathcal{H}}(N)=2^{N} \Longleftrightarrow
$$

exists N inputs that can be shattered

Fun Time

Consider positive and negative rays as \mathcal{H}, which is equivalent to the perceptron hypothesis set in 1D. The hypothesis set is often called 'decision stump' to describe the shape of its hypotheses. What is the growth function $m_{\mathcal{H}}(N)$?
(1) N
(2) $N+1$
(3) 2 N
(4) 2^{N}

Reference Answer: (3)

Two dichotomies when threshold in each of the $N-1$ 'internal' spots; two dichotomies for the all-o and all $-\times$ cases.

The Four Growth Functions

- positive rays:

$$
\begin{array}{r}
m_{\mathcal{H}}(N)=N+1 \\
m_{\mathcal{H}}(N)=\frac{1}{2} N^{2}+\frac{1}{2} N+1 \\
m_{\mathcal{H}}(N)=2^{N} \\
m_{\mathcal{H}}(N)<2^{N} \text { in some cases }
\end{array}
$$

- 2D perceptrons:
- positive intervals:
- convex sets:

what if $m_{\mathcal{H}}(N)$ replaces M ?

$$
\mathbb{P}\left[\left|E_{\text {in }}(g)-E_{\text {out }}(g)\right|>\epsilon\right] \stackrel{?}{\leq} 2 \cdot m_{\mathcal{H}}(N) \cdot \exp \left(-2 \epsilon^{2} N\right)
$$

polynomial: good; exponential: bad
for 2D or general perceptrons, $m_{\mathcal{H}}(N)$ polynomial?

Break Point of \mathcal{H}

what do we know about 2D perceptrons now? three inputs: ‘exists’ shatter; four inputs, 'for all' no shatter

if no k inputs can be shattered by \mathcal{H}, call k a break point for \mathcal{H}

- $m_{\mathcal{H}}(k)<2^{k}$
- $k+1, k+2, k+3, \ldots$ also break points!
- will study minimum break point k

2D perceptrons: break point at 4

The Four Break Points

- positive rays:

$$
m_{\mathcal{H}}(N)=N+1=O(N)
$$

break point at 2

- positive intervals:
- convex sets:

$$
m_{\mathcal{H}}(N)=\frac{1}{2} N^{2}+\frac{1}{2} N+1=O\left(N^{2}\right)
$$

break point at 3
no break point

- 2D perceptrons:

$$
m_{\mathcal{H}}(N)<2^{N} \text { in some cases }
$$

break point at 4

conjecture:

- no break point: $m_{\mathcal{H}}(N)=2^{N}$ (sure!)
- break point $k: m_{\mathcal{H}}(N)=O\left(N^{k-1}\right)$

excited? wait for next lecture :-)

Fun Time

Consider positive and negative rays as \mathcal{H}, which is equivalent to the perceptron hypothesis set in 1D. As discussed in an earlier quiz question, the growth function $m_{\mathcal{H}}(N)=2 N$. What is the minimum break point for \mathcal{H} ?
(1) 1
(2) 2
(3) 3
(4) 4

Reference Answer: (3)

At $k=3, m_{\mathcal{H}}(k)=6$ while $^{2}{ }^{k}=8$.

Summary

(1) When Can Machines Learn?

Lecture 4: Feasibility of Learning
(2) Why Can Machines Learn?

Lecture 5: Training versus Testing

- Recap and Preview
two questions: $E_{\text {out }}(g) \approx E_{\text {in }}(g)$, and $E_{\text {in }}(g) \approx 0$
- Effective Number of Lines
at most 14 through the eye of 4 inputs
- Effective Number of Hypotheses

at most $m_{\mathcal{H}}(N)$ through the eye of N inputs

- Break Point when $m_{\mathcal{H}}(N)$ becomes 'non-exponential'
- next: $m_{\mathcal{H}}(N)=p o l y(N)$?
(3) How Can Machines Learn?

4 How Can Machines Learn Better?

