
Machine Learning (NTU, Spring 2019) instructor: Hsuan-Tien Lin

Homework #4
RELEASE DATE: 05/21/2019

DUE DATE: 06/11/2019, BEFORE 14:00 ON GRADESCOPE

QUESTIONS ABOUT HOMEWORK MATERIALS ARE WELCOMED ON THE FACEBOOK
FORUM.

Please upload your solutions (without the source code) to Gradescope as instructed.

For problems marked with (*), please follow the guidelines on the course website and upload your source
code to CEIBA. You are encouraged to (but not required to) include a README to help the TAs check
your source code. Any programming language/platform is allowed.

Any form of cheating, lying, or plagiarism will not be tolerated. Students can get zero scores and/or fail
the class and/or be kicked out of school and/or receive other punishments for those kinds of misconducts.

Discussions on course materials and homework solutions are encouraged. But you should write the final
solutions alone and understand them fully. Books, notes, and Internet resources can be consulted, but
not copied from.

Since everyone needs to write the final solutions alone, there is absolutely no need to lend your homework
solutions and/or source codes to your classmates at any time. In order to maximize the level of fairness
in this class, lending and borrowing homework solutions are both regarded as dishonest behaviors and will
be punished according to the honesty policy.

You should write your solutions in English or Chinese with the common math notations introduced in
class or in the problems. We do not accept solutions written in any other languages.

This homework set comes with 160 points and 20 bonus points. In general, every home-
work set would come with a full credit of 160 points, with some possible bonus points.

Neural Network and Deep Learning

1. Consider a Neural Network with d(0) + 1 = 10 input units (the constant x
(0)
0 is counted here as a

unit), one output unit, and 36 hidden units (each x
(`)
0 is also counted as a unit). The hidden units

can be arranged in any number of layers ` = 1, · · · , L− 1, and each layer is fully connected to the
layer above it. What is the minimum possible number of weights that such a network can have?
Explain your answer.

2. Following Question 1, what is the maximum possible number of weights that such a network can
have? Explain your answer.

Autoencoder

3. Assume an autoencoder with d̃ = 1. That is, the d × d̃ weight matrix W becomes a d × 1 weight
vector w, and the linear autoencoder tries to minimize

Ein(w) =
1

N

N∑
n=1

‖xn −wwTxn‖2.

We can solve this problem with stochastic gradient decent by defining

errn(w) = ‖xn −wwTxn‖2

and calculate ∇werrn(w). What is ∇werrn(w)? List your derivation steps.

4. Following Question 3, assume that noise vectors εn are generated i.i.d. from a zero-mean, unit
variance Gaussian distribution and added to xn to make x̃n = xn + εn, a noisy version of xn.
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Then, the linear denoising autoencoder tries to minimize

Ein(w) =
1

N

N∑
n=1

‖xn −wwT (xn + εn)‖2.

For any fixed w, the expected Ein(w) is 1
N

∑N
n=1 ‖xn −wwTxn‖2 + Ω(w). What is Ω(w)? List

your derivation steps.

5. On page 11 of Lecture 213, we mentioned that it is sometimes useful to tie the encoding weights and
the decoding weights of the autoencoder to be the same. More formally, consider an autoencoder

without any x
(`)
0 . That is, the encoding weights are just w

(1)
ij and the decoding weights are w

(2)
ji

for i ∈ {1, 2, . . . , d} and j ∈ {1, 2, . . . , d̃}. Assume that uij = w
(1)
ij = w

(2)
ji . Write down the error

function E of a basic autoencoder (page 11 of Lecture 213) as a function of uij .

6. Following Question 5, consider the same error function E as a function of w instead of u as if we
do not tie the weights w by u. Prove or disprove that

∂E

∂uij
=

∂E

∂w
(1)
ij

+
∂E

∂w
(2)
ji

.

Nearest Neighbor and RBF Network

7. Consider getting the 1 Nearest Neighbor hypothesis from a data set of two examples (x+,+1)
and (x−,−1). The resulting hypothesis would actually be linear. What is the linear hypothesis
glin(x) = sign(wTx + b) (where w does not include b = w0) in terms of x+ and x−? List your
derivation steps.

8. Consider an RBF Network hypothesis for binary classification

grbfnet(x) = sign
(
β+ exp(−‖x− µ+‖2) + β− exp(−‖x− µ−‖2)

)
and assume that β+ > 0 > β−. The resulting hypothesis would actually be linear. What is the
linear hypothesis glin(x) = sign(wTx+ b) (where w does not include b = w0)? List your derivation
steps.

Matrix Factorization

9. Consider matrix factorization of d̃ = 1 with alternating least squares. Assume that the d̃×N user
factor matrix V is initialized to a constant matrix of 1. After step 2.1 of alternating least squares
(page 10 of lecture 215), prove that the optimal wm, the d̃× 1 movie ‘vector’ for the m-th movie,
is the average rating of the m-th movie.

10. Assume that for a full rating matrix R, we have obtained a perfect matrix factorization R = VT W.
That is, rnm = vT

nwm for all n,m. Then, a new user (N + 1) comes. Because we do not have any

information for the type of the movie she likes, we initialize her feature vector vN+1 to 1
N

∑N
n=1 vn,

the average user feature vector. Now, our system decides to recommend her a movie m with the
maximum predicted score vT

N+1wm. Prove that the movie would be the one with the largest
average rating.

Experiment with k Nearest Neighbor

Implement any algorithm that ‘returns’ the k Nearest Neighbor hypothesis discussed in page 8 of lecture
214.

gk-nbor(x) = sign

( ∑
m : k closest examples to x

ym

)
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Evaluate with the 0/1 error. Run the algorithm on the following set for training:

http://www.csie.ntu.edu.tw/~htlin/course/ml19spring/hw4/hw4_train.dat

and the following set for testing:

http://www.csie.ntu.edu.tw/~htlin/course/ml19spring/hw4/hw4_test.dat

11. (*) Plot Ein(gk-nbor) for k = 1, 3, 5, 7, 9. Briefly describe your findings.

12. (*) Plot Eout(gk-nbor) for k = 1, 3, 5, 7, 9. Briefly describe your findings.

13. (*) Implement guniform on page 8 of lecture 214. Plot Ein(guniform) for γ = 0.001, 0.1, 1, 10, 100.
Briefly describe your findings.

14. (*) Plot Eout(guniform) for γ = 0.001, 0.1, 1, 10, 100. Briefly describe your findings.

Experiment with k-Means

Implement the k-Means algorithm (page 16 of lecture 214). Randomly select k instances from {xn} to
initialize your µm. Run the algorithm on the following set for training:

http://www.csie.ntu.edu.tw/~htlin/course/ml19spring/hw4/hw4_nolabel_train.dat

and repeat the experiment for 500 times. Calculate the clustering Ein by

1

N

N∑
n=1

M∑
m=1

[[xn ∈ Sm]]‖xn − µm‖2

as described on page 13 of lecture 214 for M = k.

15. (*) Plot the average of Ein over 500 experiments for k = 2, 4, 6, 8, 10. Briefly describe your findings.

16. (*) Plot the variance of Ein over 500 experiments for k = 2, 4, 6, 8, 10. Briefly describe your findings.

Bonus: VC Dimension of Neural Networks

17. (10%) Prove that for ∆ ≥ 2, if N ≥ 3∆ log2 ∆ , N∆ + 1 < 2N .

18. (10%) Consider a hypothesis set H3A that consists of all d-3-1 neural networks with sign(·) as all
the transformation functions, and with (w0, w1, w2, w3) = (−2.5,+1,+1,+1) for the output neuron
only. Use the facts above (or not) to prove that the VC dimension of H3A is less than

3 ·
(
3(d+ 1) + 1

)
log2

(
3(d+ 1) + 1

)
.
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