
Machine Learning (NTU, Spring 2019) instructor: Hsuan-Tien Lin

Homework #2
RELEASE DATE: 04/05/2019

DUE DATE: 04/30/2019, BEFORE 14:00 ON GRADESCOPE

QUESTIONS ABOUT HOMEWORK MATERIALS ARE WELCOMED ON THE FACEBOOK
FORUM.

Please upload your solutions (without the source code) to Gradescope as instructed.

For problems marked with (*), please follow the guidelines on the course website and upload your source
code to CEIBA. You are encouraged to (but not required to) include a README to help the TAs check
your source code. Any programming language/platform is allowed.

Any form of cheating, lying, or plagiarism will not be tolerated. Students can get zero scores and/or fail
the class and/or be kicked out of school and/or receive other punishments for those kinds of misconducts.

Discussions on course materials and homework solutions are encouraged. But you should write the final
solutions alone and understand them fully. Books, notes, and Internet resources can be consulted, but
not copied from.

Since everyone needs to write the final solutions alone, there is absolutely no need to lend your homework
solutions and/or source codes to your classmates at any time. In order to maximize the level of fairness
in this class, lending and borrowing homework solutions are both regarded as dishonest behaviors and will
be punished according to the honesty policy.

You should write your solutions in English or Chinese with the common math notations introduced in
class or in the problems. We do not accept solutions written in any other languages.

This homework set comes with 160 points and 20 bonus points. In general, every home-
work set would come with a full credit of 160 points, with some possible bonus points.

Descent Methods for Probabilistic SVM

Recall that the probabilistic SVM is based on solving the following optimization problem:

min
A,B

F (A,B) =
1

N

N∑
n=1

ln
(

1 + exp
(
−yn

(
A ·
(
wT

svmφ(xn) + bsvm

)
+B

)))
.

1. When using the gradient descent for minimizing F (A,B), we need to compute the gradient first.

Let zn = wT
svmφ(xn) + bsvm, and pn = θ(−yn(Azn +B)), where θ(s) = exp(s)

1+exp(s) is the usual logistic

function. What is the gradient ∇F (A,B) in terms of only yn, pn, zn and N? Prove your answer.

2. When using the Newton method for minimizing F (A,B) (see Homework 3 of Machine Learning
Foundations), we need to compute −(H(F ))−1∇F in each iteration, where H(F ) is the Hessian
matrix of F at (A,B). Following the notations of Question 1, what is H(F ) in terms of only
yn, pn, zn and N? Prove your answer.

Extreme Kernel and Overfitting

3. Assume that there are the same number of positive (yn = 1) and negative (yn = −1) examples
and again all xn are different. When using the Gaussian kernel with γ →∞ in a soft-margin SVM
with C > 1, prove or disprove that the optimal α is an all-1 vector.

Blending

4. Consider the case where the target function f : [0, 1] → R is given by f(x) = x − x2 and the
input probability distribution is uniform on [0, 1]. Assume that the training set has only two
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examples generated independently from the input probability distribution and noiselessly by f ,
and the learning model is usual linear regression that minimizes the mean squared error within all
hypotheses of the form h(x) = w1x+w0. What is ḡ(x), the expected value of the hypothesis, that
the learning algorithm produces (see Page 10 of Lecture 207)? Prove your answer.

Boosting

5. Assume that linear regression (for classification) is used within AdaBoost. That is, we need to
solve the weighted-Ein optimization problem for un ≥ 0.

min
w

Eu
in(w) =

1

N

N∑
n=1

un(yn −wTxn)2.

The optimization problem above is equivalent to minimizing the usual Ein of linear regression on
some “pseudo data” {(x̃n, ỹn)}Nn=1. Write down your pseudo data (x̃n, ỹn) and prove your answer.
(Hint: There is more than one possible form of pseudo data)

6. Consider applying the AdaBoost algorithm on a binary classification data set where 78% of the
examples are positive. Because there are so many positive examples, the base algorithm within

AdaBoost returns a constant classifier g1(x) = +1 in the first iteration. Let u
(2)
+ be the individual

example weight of each positive example in the second iteration, and u
(2)
− be the individual example

weight of each negative example in the second iteration. What is u
(2)
+ /u

(2)
− ? Prove your answer.

Kernel for Decision Stumps

When talking about non-uniform voting in aggregation, we mentioned that α can be viewed as a weight
vector learned from any linear algorithm coupled with the following transform:

φ(x) =
(
g1(x), g2(x), · · · , gT (x)

)
.

When studying kernel methods, we mentioned that the kernel is simply a computational short-cut for
the inner product (φ(x))T (φ(x′)). In this problem, we mix the two topics together using the decision
stumps as our gt(x).

7. Assume that the input vectors contain only integers between (including) −M and M .

gs,i,θ(x) = s · sign
(
xi − θ

)
,

where i ∈ {1, 2, · · · , d}, d is the finite dimensionality of the input space,

s ∈ {−1,+1}, θ ∈ R, and sign(0) = +1

Two decision stumps g and ĝ are defined as the same if g(x) = ĝ(x) for every x ∈ X . Two decision
stumps are different if they are not the same. How many different decision stumps are there for
the case of d = 2 and M = 5? Explain your answer.

8. Continuing from the previous problem, let G = { all different decision stumps for X } and enumerate
each hypothesis g ∈ G by some index t. Define

φds(x) =

(
g1(x), g2(x), · · · , gt(x), · · · , g|G|(x)

)
.

For any given (d,M), derive a simple equation that evaluates Kds(x,x
′) = (φds(x))T (φds(x

′))
efficiently and prove your answer.
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Experiments with Bagging Ridge Regression

First, write a program to implement the (linear) ridge regression algorithm for classification (i.e. use 0/1
error for evaluation). Consider the following data set.

hw2_lssvm_all.dat

Please do add x0 = 1 to your data. Use the first 400 examples for training to get g and the remaining
for testing. Calculate Ein and Eout with the 0/1 error. Consider λ ∈ {0.05, 0.5, 5, 50, 500}.

9. (*) Among all λ, which λ results in the minimum Ein(g)? What is the corresponding Ein(g)?

10. (*) Among all λ, which λ results in the minimum Eout(g)? What is the corresponding Eout(g)?

Next, write a program to implement bagging on top of ridge regression. Again consider the following
data set

hw2_lssvm_all.dat

Please do add x0 = 1 to your data. Use the first 400 examples for training and the remaining for testing.
Calculate Ein and Eout with the 0/1 error. Note that each ridge regression for classification should take
the sign operation before uniform aggregation (with voting). Consider λ ∈ {0.05, 0.5, 5, 50, 500}. Use
400 bootstrapped examples in bagging and 250 iterations of bagging (e.g. 250 gt’s) to get G.

11. (*) Among all λ, which λ results in the minimum Ein(G)? What is the corresponding Ein(G)?
Compare your results with the one in Question 9 and describe your findings.

12. (*) Among all λ, which λ results in the minimum Eout(G)? What is the corresponding Eout(G)?
Compare your results with the one in Question 10 and describe your findings.

Experiments with Adaptive Boosting

For Questions 13–16, implement the AdaBoost-Stump algorithm as introduced in Lecture 208. Run the
algorithm on the following set for training:

hw2_adaboost_train.dat

and the following set for testing:
hw2_adaboost_test.dat

Use a total of T = 300 iterations (please do not stop earlier than 300), and calculate Ein and Eout with
the 0/1 error.

For the decision stump algorithm, please implement the following steps. Any ties can be arbitrarily
broken.

(1) For any feature i, sort all the xn,i values to x[n],i such that x[n],i ≤ x[n+1],i.

(2) Consider thresholds within −∞ and all the midpoints
x[n],i+x[n+1],i

2 . Test those thresholds with
s ∈ {−1,+1} to determine the best (s, θ) combination that minimizes Euin using feature i.

(3) Pick the best (s, i, θ) combination by enumerating over all possible i.

For those interested, step 2 can be carried out in O(N) time only!!

13. (*) Plot a figure for t versus Ein(gt). Should Ein(gt) be decreasing or increasing? Write down your
observations and explanations. What is Ein(gT )?

14. (*) Plot a figure for t versus Ein(Gt), where Gt(x) =
∑t
τ=1 ατgτ (x). That is, G = GT . Should

Ein(Gt) be decreasing or increasing? Write down your observations and explanations. What is
Ein(GT )?

15. (*) Plot a figure for t versus Ut, where Ut =
∑N
n=1 u

(t)
n . Should Ut be decreasing or increasing?

Write down your observations and explanations. What is UT ?

16. (*) Plot a figure for t versus Eout(Gt) estimated with the test set. Should Eout(Gt) be decreasing
or increasing? Write down your observations and explanations. What is Eout(GT )?
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Bonus: Power of Adaptive Boosting

In this part, we will prove that AdaBoost can reach Ein(GT ) = 0 if T is large enough and every hypothesis
gt satisfies εt ≤ ε < 1

2 . Let Ut be defined as in Question 15. It can be proved (see Lecture 211 of Machine
Learning Techniques) that

Ut+1 =
1

N

N∑
n=1

exp

(
−yn

t∑
τ=1

ατgτ (xn)

)
.

and Ein(GT ) ≤ UT+1.

17. Prove that U1 = 1 and Ut+1 = Ut · 2
√
εt(1− εt) ≤ Ut · 2

√
ε(1− ε).

18. Using the fact that
√
ε(1− ε) ≤ 1

2 exp
(
−2( 1

2 − ε)
2
)

for ε < 1
2 , argue that after T = O(logN)

iterations, Ein(GT ) = 0.
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