
Machine Learning (NTU, Fall 2015) instructor: Hsuan-Tien Lin

Homework #4
RELEASE DATE: 11/12/2015

DUE DATE: 11/25/2015, BEFORE NOON

QUESTIONS ABOUT HOMEWORK MATERIALS ARE WELCOMED ON THE COURSERA
FORUM.

Unless granted by the instructor in advance, you must turn in a printed/written copy of your solutions
(without the source code) for all problems.

For problems marked with (*), please follow the guidelines on the course website and upload your
source code to designated places. You are encouraged to (but not required to) include a README to help
the TAs check your source code. Any programming language/platform is allowed.

Any form of cheating, lying, or plagiarism will not be tolerated. Students can get zero scores and/or fail
the class and/or be kicked out of school and/or receive other punishments for those kinds of misconducts.

Discussions on course materials and homework solutions are encouraged. But you should write the final
solutions alone and understand them fully. Books, notes, and Internet resources can be consulted, but
not copied from.

Since everyone needs to write the final solutions alone, there is absolutely no need to lend your homework
solutions and/or source codes to your classmates at any time. In order to maximize the level of fairness
in this class, lending and borrowing homework solutions are both regarded as dishonest behaviors and will
be punished according to the honesty policy.

You should write your solutions in English or Chinese with the common math notations introduced in
class or in the problems. We do not accept solutions written in any other languages.

This homework set comes with 200 points and 20 bonus points. In general, every home-
work set would come with a full credit of 200 points, with some possible bonus points.

Overfitting and Deterministic Noise

1. Deterministic noise depends on H, as some models approximate f better than others. Assume
H′ ⊂ H and that f is fixed. In general (but not necessarily in all cases), if we use H′ instead of
H, argue whether deterministic noise will decrease, increase, or be the same. Explain and defend
your choice.

Regularization With Polynomials

Polynomial models can be viewed as linear models in a space Z, under a nonlinear transform Φ : X →
Z. Here, Φ transforms the scalar x into a vector z of Legendre polynomials, z = (1, L1(x), L2(x), ..., LQ(x)).
Our hypothesis set will be expressed as a linear combination of these polynomials,

HQ =

{
h | h(x) = wTz =

Q∑
q=0

wqLq(x)

}
,

where L0(x) = 1.

2. Consider the following hypothesis set defined by the constraint:

H(Q, c,Qo) = {h | h(x) = wTz ∈ HQ;wq = c for q ≥ Qo}

. What Q satisfies H(10, 0, 3) ∩H(10, 0, 4) = HQ? Prove your answer.

Regularization and Weight Decay

Consider the augmented error

Eaug(w) = Ein(w) +
λ

N
wTw

with some λ > 0.

1 of 4



Machine Learning (NTU, Fall 2015) instructor: Hsuan-Tien Lin

3. If we want to minimize the augmented error Eaug(w) by gradient descent, with η as learning rate,
the resulting update rule should be

w(t+ 1)←− αw(t) + β∇Ein(w(t))

what are α and β? Prove your answer.

4. Let wreg(λ) be the optimal solution for the formulation above. Prove that ‖wreg(λ)‖ is a non-
increasing function of λ for λ ≥ 0.

Leave-One-Out Cross-Validation

5. You are given the data points: (−1, 0), (ρ, 1), (1, 0), ρ ≥ 0, and a choice between two models:
constant [h0(x) = b0 ] and linear [h1(x) = a1x+b1 ]. For which value of ρ would the two models be
tied using leave-one-out cross-validation with the squared error measure? Provide your derivation
steps.

Learning Principles

In Problems 6-7, suppose that for 5 weeks in a row, a letter arrives in the mail that predicts the
outcome of the upcoming Monday night baseball game.(Assume there are no tie.) You keenly watch
each Monday and to your surprise, the prediction is correct each time. On the day after the fifth game, a
letter arrives, stating that if you wish to see next week’s prediction, a payment of NTD 1,000 is required.

6. To make sure that at least one person receives correct predictions on all 5 games from him, how
many letters should be sent before the fifth game? Provide derivation steps for your answer, and
describe the corresponding sending scheme.

7. If the cost of printing and mailing out each letter is NTD 10. If the sender sends the minimum
number of letters out, how much money can be made for the above ‘fraud’ to succeed once? That
is, one of the recipients does send him NTD 1,000 to receive the prediction of the 6-th game?
Provide your derivation steps.

For Problems 8-10, we consider the following. In our credit card example, the bank starts with some
vague idea of what constitutes a good credit risk. So, as customers x1,x2, ...,xN arrive, the bank applies
its vague idea to approve credit cards for some of these customers based on a formula a(x). Then,
only those who get credit cards are monitored to see if they default or not. For simplicity, suppose
that the first N = 10, 000 customers were given credit cards by the credit approval function a(x). Now
that the bank knows the behavior of these customers, it comes to you to improve their algorithm for
approving credit. The bank gives you the data (x1, y1), ..., (xN , yN ). Before you look at the data, you
do mathematical derivations and come up with a credit approval function. You now test it on the data
and, to your delight, obtain perfect prediction.

8. What is M , the size of your hypothesis set? Defend your answer.

9. With such an M , what does the Hoeffding bound say about the probability that the true average
error rate of g is worse than 1% for N = 10, 000? Provide your calculation steps.

10. You assure the bank that you have a got a system g for approving credit cards for new customers,
which is nearly error-free. Your confidence is given by your answer to the previous question. The
bank is thrilled and uses your g to approve credit for new customers. To their dismay, more than
half their credit cards are being defaulted on. Assume that the customers that were sent to the
old credit approval function and the customers that were sent to your g are indeed i.i.d. from the
same distribution, and the bank is lucky enough (so the ‘bad luck’ that “the true error of g is worse
than 1%” does not happen). If the old credit approval function was a(x). Describe a scheme that
uses both a and g to improve the performance of a, and defend your scheme.
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Virtual Examples and Regularization

Consider linear regression with virtual examples. That is, we addK virtual examples (x̃1, ỹ1), (x̃2, ỹ2), . . . , (x̃K , ỹK)
to the training data set, and solve

min
w

1

N +K

(
N∑
n=1

(yn −wTxn)2 +

K∑
k=1

(ỹk −wT x̃k)2

)
.

We will show that using some ‘special’ virtual examples, which were claimed to be a possible way to
combat overfitting in Lecture 9, is related to regularization, another possible way to combat overfitting
discussed in Lecture 10. Let X̃ = [x̃1x̃2 . . . x̃K ]T , and ỹ = [ỹ1, ỹ2, . . . , ỹK ]T .

11. What is the optimal w to the optimization problem above, assuming that all the inversions exist?
Provide an analytic solution and prove its correctness.

12. For what X̃ and ỹ will the solution of this linear regression equal to

wreg = arg min
w

λ

N
‖w‖2 +

1

N
‖Xw − y‖2?

Prove your answer.

Experiment with Regularized Linear Regression and Validation

Consider regularized linear regression (also called ridge regression) for classification.

wreg = arg min
w

λ

N
‖w‖2 +

1

N
‖Xw − y‖2,

Run the algorithm on the following data set as D:

http://www.csie.ntu.edu.tw/~htlin/course/ml15fall/hw4/hw4_train.dat

and the following set for evaulating Eout:

http://www.csie.ntu.edu.tw/~htlin/course/ml15fall/hw4/hw4_test.dat

Because the data sets are for classification, please consider only the 0/1 error for all the problems below.

13. (*) Let λ = 11.26, what is the corresponding Ein and Eout?

14. (*) Plot the curve of Ein with respect to log10 λ = {2, 1, 0,−1, . . . ,−8,−9,−10}. What is the λ
with the minimum Ein? What is Eout(gλ) on such λ? Break the tie by selecting the largest λ.

15. (*) Plot the curve of Eout with respect to log10 λ = {2, 1, 0,−1, . . . ,−8,−9,−10}. What is the λ
with the minimum Eout? Break the tie by selecting the largest λ.

Now split the given training examples in D to the first 120 examples for Dtrain and 80 for Dval.

Ideally, you should randomly do the 120/80 split. Because the given examples are already randomly
permuted, however, we would use a fixed split for the purpose of this problem.

Run the algorithm on Dtrain to get g−λ , and validate g−λ with Dval.

16. (*) Plot Etrain(g−λ ) with respect to log10 λ = {2, 1, 0,−1, . . . ,−8,−9,−10}. What is the λ with the
minimum Etrain(g−λ )? What is Eout(g

−
λ ) on such λ? Break the tie by selecting the largest λ.

17. (*) Plot Eval(g
−
λ ) with respect to log10 λ = {2, 1, 0,−1, . . . ,−8,−9,−10}. What is the λ with the

minimum Eval(g
−
λ )? What is Eout(g

−
λ ) on such λ? Break the tie by selecting the largest λ.

18. (*) Run the algorithm with the optimal λ of the previous problem on the whole D to get gλ. What
is Ein(gλ) and Eout(gλ)?

Now split the given training examples in D to five folds, the first 40 being fold 1, the next 40 being
fold 2, and so on. Again, we take a fixed split because the given examples are already randomly
permuted.
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19. (*) Plot Ecv with respect to log10 λ = {2, 1, 0,−1, . . . ,−8,−9,−10}. What is the λ with the
minimum Ecv, where Ecv comes from the five folds defined above? Break the tie by selecting the
largest λ.

20. (*) Run the algorithm with the optimal λ of the previous problem on the whole D to get gλ. What
is Ein(gλ) and Eout(gλ)?

Bonus: More on Virtual Examples

21. (BBQ, 10 points) Continue from Problem 12. Assume that we take the more general

wTΓTΓw

as the regularizer instead of the squared wTw. This is commonly called Tikhonov regularization.
What virtual examples should we equivalently add to the original data set?

22. (BBQ, 10 points) Continue from Problem 12. Assume that we have some known hints whint about
the rough value of w and hence want to use

‖w −whint‖2

as the regularizer instead of the squared wTw. What virtual examples should we equivalently add
to the original data set?
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