
Machine Learning (NTU, Fall 2015) instructor: Hsuan-Tien Lin

Homework #3
RELEASE DATE: 11/02/2015

DUE DATE: 11/16/2015 (MONDAY!!!), BEFORE NOON

QUESTIONS ABOUT HOMEWORK MATERIALS ARE WELCOMED ON THE COURSERA
FORUM.

Unless granted by the instructor in advance, you must turn in a printed/written copy of your solutions
(without the source code) for all problems.

For problems marked with (*), please follow the guidelines on the course website and upload your
source code to designated places. You are encouraged to (but not required to) include a README to help
the TAs check your source code. Any programming language/platform is allowed.

Any form of cheating, lying, or plagiarism will not be tolerated. Students can get zero scores and/or fail
the class and/or be kicked out of school and/or receive other punishments for those kinds of misconducts.

Discussions on course materials and homework solutions are encouraged. But you should write the final
solutions alone and understand them fully. Books, notes, and Internet resources can be consulted, but
not copied from.

Since everyone needs to write the final solutions alone, there is absolutely no need to lend your homework
solutions and/or source codes to your classmates at any time. In order to maximize the level of fairness
in this class, lending and borrowing homework solutions are both regarded as dishonest behaviors and will
be punished according to the honesty policy.

You should write your solutions in English or Chinese with the common math notations introduced in
class or in the problems. We do not accept solutions written in any other languages.

This homework set comes with 200 points and 20 bonus points. In general, every home-
work set would come with a full credit of 200 points, with some possible bonus points.

Questions 1-2 are about linear regression

1. Consider a noisy target y = wT
f x + ε, where x ∈ Rd (with the added coordinate x0 = 1), y ∈ R,

wf is an unknown vector, and ε is a noise term with zero mean and σ2 variance. Assume ε is
independent of x and of all other ε’s. If linear regression is carried out using a training data set
D = {(x1, y1), . . . , (xN , yN )}, and outputs the parameter vector wlin, it can be shown that the
expected in-sample error Ein with respect to D is given by:

ED[Ein(wlin)] = σ2

(
1− d+ 1

N

)
For σ = 0.1 and d = 8, what is the smallest number of examples N that will result in an expected
Ein greater than 0.008? Please provide calculation steps of your answer.

2. Recall that we have introduced the hat matrix H = X(XT X)−1XT in class, where X ∈ RN×(d+1).
That is, there are d features. Assume XT X is invertible, which statements of H are true? Please
prove all the statements that you believe to be true.

[a] H is positive semi-definite.

[b] H is always invertible.

[c] Some eigenvalues of H are bigger than 1.

[d] d+ 1 eigenvalues of H are 1.

[e] H1126 = H.

Questions 3-5 are about error and SGD

3. Which of the following are upper bounds of
q
sign(wTx) 6= y

y
for y ∈ {−1,+1}? Explain your

choices.

[a] err(w) = max(0, 1− ywTx)
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[b] err(w) =
(
max(0, 1− ywTx)

)2
[c] err(w) = max(0,−ywTx)

[d] err(w) = θ(−ywTx)

[e] err(w) = exp(−ywTx)

4. Which of the following are differentiable functions of w everywhere? Explain your choices.

[a] err(w) = max(0, 1− ywTx)

[b] err(w) =
(
max(0, 1− ywTx)

)2
[c] err(w) = max(0,−ywTx)

[d] err(w) = θ(−ywTx)

[e] err(w) = exp(−ywTx)

5. When using SGD on the following error functions and ‘ignoring’ some singular points that are not
differentiable, prove or disprove that err(w) = max(0,−ywTx) results in PLA.

For Questions 6-10, you will play with gradient descent algorithm and variants

6. Consider a function

E(u, v) = eu + e2v + euv + u2 − 2uv + 2v2 − 3u− 2v.

What is the gradient ∇E(u, v) around (u, v) = (0, 0)? Please provide derivation steps.

7. In class, we have taught that the update rule of the gradient descent algorithm is

(ut+1, vt+1) = (ut, vt)− η∇E(ut, vt)

Please start from (u0, v0) = (0, 0), and fix η = 0.01, what is E(u5, v5) after five updates? Please
provide derivation steps.

8. Continued from Question 7, if we approximate the E(u+ ∆u, v+ ∆v) by Ê2(∆u,∆v), where Ê2 is
the second-order Taylor’s expansion of E around (u, v). Suppose

Ê2(∆u,∆v) = buu(∆u)2 + bvv(∆v)2 + buv(∆u)(∆v) + bu∆u+ bv∆v + b.

What are the values of (buu, bvv, buv, bu, bv, b) when (u, v) = (0, 0)? Please provide derivation
steps.

9. Continued from Question 8 and denote the Hessian matrix to be ∇2E(u, v), and assume that the
Hessian matrix is positive definite. What is the optimal (∆u,∆v) to minimize Ê2(∆u,∆v)? The
direction is called the Newton Direction. Please provide derivation steps.

10. Using the Newton direction (without η) to update, please start from (u0, v0) = (0, 0), what is
E(u5, v5) after five updates? Please provide derivation steps.

For Questions 11-12, you will play with feature transforms

11. Consider six inputs x1 = (1, 1), x2 = (1,−1), x3 = (−1,−1), x4 = (−1, 1), x5 = (0, 0), x6 = (1, 0).
What is the biggest subset of those input vectors that can be shattered by the union of quadratic,
linear, or constant hypotheses of x? Please show how the vectors can be shattered.

12. Assume that a transformer peeks the data and decides the following transform Φ “intelligently”
from the data of size N . The transform maps x ∈ Rd to z ∈ RN , where

(Φ(x))n = zn = Jx = xnK

Consider a learning algorithm that performs linear classification after the feature transform. That
is, the algorithm effectively works on an HΦ that includes all possible Φ. What is dvc(HΦ) (i.e.
the maximum number of points that can be shattered by the process above)? Please provide
explanation of your answer.
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For Questions 13-15, you will play with linear regression and feature transforms.

Consider the target function:

f(x1, x2) = sign(x21 + x22 − 0.6)

Generate a training set of N = 1000 points on X = [−1, 1] × [−1, 1] with uniform probability of
picking each x ∈ X . Generate simulated noise by flipping the sign of the output in a random 10% subset
of the generated training set.

13. (*) Carry out Linear Regression without transformation, i.e., with feature vector:

(1, x1, x2),

to find wlin, and use wlin directly for classification. Run the experiments for 1000 times and plot
a histogram on the classification (0/1) in-sample error (Ein). What is the average Ein over 1000
experiments?

Now, transform the training data into the following nonlinear feature vector:

(1, x1, x2, x1x2, x
2
1, x

2
2)

Find the vector w̃ that corresponds to the solution of Linear Regression, and take it for classifica-
tion.

14. (*) Run the experiment for 1000 times, and plot a histogram on w̃3, the weight associated with
x1x2. What is the average w̃3?

15. (*) Continue from Question 14, and plot a histogram on the classification Eout instead. You can
estimate it by generating a new set of 1000 points and adding noise as before. What is the average
Eout?

For Questions 16-17, you will derive an algorithm for multinomial (multiclass) logistic
regression.

For a K-class classification problem, we will denote the output space Y = {1, 2, · · · ,K}. The hy-
potheses considered by MLR are indexed by a list of weight vectors (w1, · · · ,wK), each weight vector of
length d+ 1. Each list represents a hypothesis

hy(x) =
exp(wT

y x)∑K
i=1 exp(wT

i x)

that can be used to approximate the target distribution P (y|x). MLR then seeks for the maximum
likelihood solution over all such hypotheses.

16. For general K, derive an Ein(w1, · · · ,wK) like page 11 of Lecture 10 slides by minimizing the
negative log likelihood. Please provide derivation steps.

17. For the Ein derived above, its gradient ∇Ein can be represented by
(

∂Ein

∂w1
, ∂Ein

∂w2
, · · · , ∂Ein

∂wK

)
, write

down the derivation step and the final ∂Ein

∂wi
.

For Questions 18-20, you will play with logistic regression.

18. (*) Implement the fixed learning rate gradient descent algorithm below for logistic regression, ini-
tialized with 0. Run the algorithm with η = 0.001 and T = 2000 on the following set for training:

http://www.csie.ntu.edu.tw/~htlin/course/ml15fall/hw3/hw3_train.dat
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and the following set for testing:

http://www.csie.ntu.edu.tw/~htlin/course/ml15fall/hw3/hw3_test.dat

What is the weight vector within your g? What is the Eout(g) from your algorithm, evaluated using
the 0/1 error on the test set?

19. (*) Implement the fixed learning rate gradient descent algorithm below for logistic regression, ini-
tialized with 0. Run the algorithm with η = 0.01 and T = 2000 on the following set for training:

http://www.csie.ntu.edu.tw/~htlin/course/ml15fall/hw3/hw3_train.dat

and the following set for testing:

http://www.csie.ntu.edu.tw/~htlin/course/ml15fall/hw3/hw3_test.dat

What is the weight vector within your g? What is the Eout(g) from your algorithm, evaluated using
the 0/1 error on the test set?

20. (*) Implement the fixed learning rate stochastic gradient descent algorithm below for logistic re-
gression, initialized with 0. Instead of randomly choosing n in each iteration, please simply pick
the example with the cyclic order n = 1, 2, . . . , N, 1, 2, . . .. Run the algorithm with η = 0.001 and
T = 2000 on the following set for training:

http://www.csie.ntu.edu.tw/~htlin/course/ml15fall/hw3/hw3_train.dat

and the following set for testing:

http://www.csie.ntu.edu.tw/~htlin/course/ml15fall/hw3/hw3_test.dat

What is the weight vector within your g? What is the Eout(g) from your algorithm, evaluated using
the 0/1 error on the test set?

Bonus: Smart ‘Cheating’

21. (BBQ, 10 points) For a regression problem, the root-mean-square-error (RMSE) of a hypothesis h
on a test set {(xn, yn)}Nn=1 is defined as

RMSE(h) =

√√√√ 1

N

N∑
n=1

(yn − h(xn))
2
.

Please consider a case of knowing all the xn, none of the yn, but allowed to query RMSE(h) for
some h.

For any given hypothesis h, let

h = (h(x1), h(x2), · · · , h(xN ))

y = (y1, y2, · · · , yN ).

To compute hTy, what is the least number of queries?

22. (BBQ, 10 points) Continuing from Question 21, for any given set of hypotheses {h1, h2, · · · , hK}.
Let H(x) =

∑K
k=1 wkhk(x). To solve

min
w1,w2,··· ,wK

RMSE (H) ,

what is the least number of queries?
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