
Machine Learning (NTU, Fall 2014) instructor: Hsuan-Tien Lin

Homework #6
RELEASE DATE: 12/21/2014

DUE DATE: 01/07/2015, BEFORE NOON

QUESTIONS ABOUT HOMEWORK MATERIALS ARE WELCOMED ON THE COURSERA
FORUM.

Unless granted by the instructor in advance, you must turn in a printed/written copy of your solutions
(without the source code) for all problems. For problems marked with (*), please follow the guidelines
on the course website and upload your source code to designated places. You are encouraged to (but
not required to) include a README to help the TAs check your source code. Any programming lan-
guage/platform is allowed.

Any form of cheating, lying, or plagiarism will not be tolerated. Students can get zero scores and/or fail
the class and/or be kicked out of school and/or receive other punishments for those kinds of misconducts.

Discussions on course materials and homework solutions are encouraged. But you should write the final
solutions alone and understand them fully. Books, notes, and Internet resources can be consulted, but
not copied from.

Since everyone needs to write the final solutions alone, there is absolutely no need to lend your homework
solutions and/or source codes to your classmates at any time. In order to maximize the level of fairness
in this class, lending and borrowing homework solutions are both regarded as dishonest behaviors and will
be punished according to the honesty policy.

You should write your solutions in English or Chinese with the common math notations introduced in
class or in the problems. We do not accept solutions written in any other languages.

There are two kinds of regular problems.

• multiple-choice question (MCQ): There are several choices and only one of them is correct.
You should choose one and only one.

• multiple-response question (MRQ): There are several choices and none, some, or all of them
are correct. You should write down every choice that you think to be correct.

Some problems also come with (+ . . .) that contains additional todo items.
If there are big bonus questions (BBQ), please simply follow the problem guideline to write down your
solution, if you choose to tackle them.

This homework set comes with 200 points and 20 bonus points. In general, every home-
work set would come with a full credit of 200 points, with some possible bonus points.

Decent Methods for Probabilistic SVM

Recall that the probabilistic SVM is based on solving the following optimization problem:

min
A,B

F (A,B) =
1

N

N∑
n=1

ln
(

1 + exp
(
−yn

(
A ·
(
wT

svmφ(xn) + bsvm

)
+B

)))
.

1. (MCQ) When using the gradient descent for minimizing F (A,B), we need to compute the gradient
first. Let zn = wT

svmφ(xn)+bsvm, and pn = θ(−yn(Azn+B)), where θ is the usual logistic function.
What is the gradient ∇F (A,B)?

[a] 1
N

∑N
n=1[−ynpnzn,−ynpn]T

[b] 1
N

∑N
n=1[−ynpnzn,+ynpn]T

[c] 1
N

∑N
n=1[+ynpnzn,−ynpn]T

[d] 1
N

∑N
n=1[+ynpnzn,+ynpn]T
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[e] none of the other choices

(+ derivation of your choice)

2. (MCQ) When using the Newton method for minimizing F (A,B) (see homework 3 of machine
learning foundations), we need to compute −(H(F ))−1∇F in each iteration, where H(F ) is the
Hessian matrix of F at (A,B). Following the notations of the previous question, what is H(F )?

[a] 1
N

∑N
n=1

[
z2npn(1− pn) znpn(1− pn)
znpn(1− pn) pn(1− pn)

]
[b] 1

N

∑N
n=1

[
z2nyn(1− yn) znyn(1− yn)
znyn(1− yn) yn(1− yn)

]
[c] 1

N

∑N
n=1

[
z2npn(1− yn) znpn(1− yn)
znpn(1− yn) pn(1− yn)

]
[d] 1

N

∑N
n=1

[
z2nyn(1− pn) znyn(1− pn)
znyn(1− pn) yn(1− pn)

]
[e] none of the other choices

(+ derivation of your choice)

Kernel Regression Models

3. (MCQ) Recall that N is the size of the data set and d is the dimensionality of the input space.
What is the size of matrix the get inverted in kernel ridge regression?

[a] d× d
[b] N ×N
[c] Nd×Nd
[d] N2 ×N2

[e] none of the other choices

(+ explanation of your choice)

The usual support vector regression model solves the following optimization problem.

(P1) min
b,w,ξ∨,ξ∧

1

2
wTw + C

N∑
n=1

(ξ∨n + ξ∧n )

s.t. −ε− ξ∨n ≤ yn −wTφ(xn)− b ≤ ε+ ξ∧n .

ξ∨n ≥ 0, ξ∧n ≥ 0

Usual support vector regression penalizes the violations ξ∨n and ξ∧n linearly. Another popular formulation,
called `2 loss support vector regression, penalizes the violations quadratically, just like the `2 loss SVM.

(P2) min
b,w,ξ∨,ξ∧

1

2
wTw + C

N∑
n=1

(
ξ∨n

2
+ ξ∧n

2
)

s.t. −ε− ξ∨n ≤ yn −wTφ(xn)− b ≤ ε+ ξ∧n .

4. (MCQ) Which of the following is an equivalent ‘unconstrained’ form of (P2)?

[a] minb,w
1
2w

Tw + C
∑N
n=1(yn −wTφ(xn)− b)2

[b] minb,w
1
2w

Tw + C
∑N
n=1(|yn −wTφ(xn)− b| − ε)2

[c] minb,w
1
2w

Tw + C
∑N
n=1(max(ε, |yn −wTφ(xn)− b|))2
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[d] minb,w
1
2w

Tw + C
∑N
n=1(max(0, |yn −wTφ(xn)− b| − ε))2

[e] none of the other choices

(+ explanation of your choice)

5. (MCQ) By a slight modification of the representer theorem presented in the class, the optimal w

must satisfy w =
∑N
n=1 βnzn. We can substitute the form of the optimal w into the answer in

the previous question to derive an optimization problem that contains β (and b) only, which would
look like

min
b,β

F (b,β) =
1

2

N∑
m=1

N∑
n=1

βnβmK(xn,xm) + something ,

where K(xn,xm) = φ(xn)Tφ(xm) is the kernel function. One thing that you should see is that
F (b,β) is differentiable to βn (and b) and hence you can use gradient descent to solve for the

optimal β. For any β, let sn =
∑N
m=1 βmK(xn, xm) + b. What is ∂F (b,β)

∂βm
?

[a]
∑N
n=1 βnK(xn,xm)− 2C

∑N
n=1 J|yn − sn| ≥ εK (|yn − sn| − ε)sign(yn − sn)K(xn,xm)

[b]
∑N
n=1 βnK(xn,xm) + 2C

∑N
n=1 J|yn − sn| ≥ εK (|yn − sn| − ε)sign(yn − sn)K(xn,xm)

[c]
∑N
n=1 βnK(xn,xm)− 2C

∑N
n=1 J|yn − sn| ≤ εK (|yn − sn| − ε)sign(yn − sn)K(xn,xm)

[d]
∑N
n=1 βnK(xn,xm) + 2C

∑N
n=1 J|yn − sn| ≤ εK (|yn − sn| − ε)sign(yn − sn)K(xn,xm)

[e] none of the other choices

(+ derivation of your choice)

Blending and Bagging

6. (MCQ) Consider T + 1 hypotheses g0, g1, · · · , gT . Let g0(x) = 0 for all x. Assume that your boss
holds a test set {(x̃m, ỹm)}Mm=1, where you know x̃m but ỹm is hidden. Nevertheless, you are allowed

to know the test squared error Etest(gt) = 1
M

∑M
m=1(gt(x̃m)− ỹm)2 = et for t = 0, 1, 2, · · · , T . Also,

assume that 1
M

∑M
m=1(gt(x̃m))2 = st. Which of the following equals

∑M
m=1 gt(x̃m)ỹm? Note that

the calculation is the key to test set blending technique that the NTU team has used in KDDCup
2011.

[a] M
2 (+e0 + st − et)

[b] M
2 (+e0 − st + et)

[c] M
2 (−e0 + st − et)

[d] M
2 (−e0 − st + et)

[e] none of the other choices

(+ proof of your choice)

7. (MCQ) If bootstrapping is used to sample N ′ = pN examples out of N examples and N is very
large. Approximately how many of the N examples will not be sampled at all?

[a] e−1 ·N
[b] e−p ·N
[c] e−1/p ·N
[d] (1− e−p) ·N
[e] (1− e−1/p) ·N

(+ proof of your choice)
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Kernel for Decision Stumps

When talking about non-uniform voting in aggregation, we mentioned that α can be viewed as a weight
vector learned from any linear algorithm coupled with the following transform:

φ(x) =
(
g1(x), g2(x), · · · , gT (x)

)
.

When studying kernel methods, we mentioned that the kernel is simply a computational short-cut for the
inner product φ(x)Tφ(x′). In this problem, we mix the two topics together using the decision stumps
as our gt(x).

8. (MRQ) Assume that the input vectors contain only integers between (including) L and R.

gs,i,θ(x) = s · sign
(
xi − θ

)
,

where i ∈ {1, 2, · · · , d}, d is the dimensionality of the input space,

s ∈ {−1,+1}, θ ∈ R, and sign(0) = +1

Two decision stumps g and ĝ are defined as the same if g(x) = ĝ(x) for every x ∈ X . Two decision
stumps are different if they are not the same. Which of the followings are true?

[a] X is of infinite size

[b] g+1,1,L−1 is the same as g−1,3,R+1

[c] gs,i,θ is the same as gs,i,ceiling(θ), where ceiling(θ) is the smallest integer that is greater than
or equal to θ

[d] The number of different decision stumps equals the size of X
[e] There are 22 different decision stumps for the case of d = 2 and (L,R) = (1, 6)

(+ explanation of your choices)

9. (MCQ) Continuing from the previous question, let G = { all different decision stumps for X } and
enumerate each hypothesis g ∈ G by some index t. Define

φds(x) =

(
g1(x), g2(x), · · · , gt(x), · · · , g|G|(x)

)
.

Derive a simple equation that evaluates Kds(x,x
′) = φds(x)Tφds(x

′) efficiently. Which of the
following equation is correct?

[a] Kds(x,x
′) = d(R− L)− 2‖x− x′‖1 + 2

[b] Kds(x,x
′) = d(R− L)− 2‖x− x′‖1 − 2

[c] Kds(x,x
′) = 2d(R− L)− 4‖x− x′‖1 + 2

[d] Kds(x,x
′) = 2d(R− L)− 4‖x− x′‖1 − 2

[e] none of the other choices

(+ proof of your choice)

Theory of AdaBoost

10. (MCQ) After running the AdaBoost algorithm, which example (xn, yn) results in the largest u
(T+1)
n

value?

[a] argmax1≤n≤N (+yn
∑T
t=1 εtgt(xn))

[b] argmax1≤n≤N (−yn
∑T
t=1 εtgt(xn))

[c] argmax1≤n≤N (+yn
∑T
t=1 αtgt(xn))
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[d] argmax1≤n≤N (−yn
∑T
t=1 αtgt(xn))

[e] none of the other choices

(+ proof of your choice)

11. (MRQ) For the AdaBoost algorithm, let U (t) =
∑N
n=1 u

(t)
n , the total example weights in the

beginning of the t-th iteration, and Gt(x) = sign
(∑t

τ=1 ατgτ (x)
)

, the aggregated classifier until

the t-th iteration. Which of the following is true?

[a] U (1) = 1

[b] Ein(gt) ≤ U (t+1) for all t ≥ 1

[c] Ein(Gt) ≤ U (t+1) for all t ≥ 1

[d] U (t+1) < U (t) if εt <
1
2

[e] U (t+1) = U (t) if εt = 1

(+ proof of your choice)

Experiments of AdaBoost

Implement the AdaBoost algorithm (Page 16 of Lecture 208) with decision stumps. Run the algorithm
on the following set for training:

http://www.csie.ntu.edu.tw/~htlin/course/ml14fall/hw6/hw6_train.dat

and the following set for testing:

http://www.csie.ntu.edu.tw/~htlin/course/ml14fall/hw6/hw6_test.dat

Use a total of T = 300 iterations. Let Gt(x) = sign

(
t∑

τ=1

ατgτ (x)

)
, the aggregated classifier until the

t-th iteration. Evaluate Ein and Eout (by the test set) using the 0/1 error.

12. (MCQ, *) Which of the following is true about Ein(GT )?

[a] Ein(GT ) = 0

[b] 0 < Ein(GT ) < 0.1

[c] 0.1 ≤ Ein(GT ) < 0.2

[d] 0.2 ≤ Ein(GT ) < 0.3

[e] Ein(GT ) > 0.3

13. (MCQ, *) Which of the following is true about Eout(GT )?

[a] Eout(GT ) = 0

[b] 0 < Eout(GT ) < 0.1

[c] 0.1 ≤ Eout(GT ) < 0.2

[d] 0.2 ≤ Eout(GT ) < 0.3

[e] Eout(GT ) > 0.3

14. (MCQ, *) Which of the following is true about U (t) =
∑N
n=1 u

(t)
n ?

[a] U (T ) = 0

[b] 0 < U (T ) < 0.1

[c] 0.1 ≤ U (T ) < 0.2

[d] 0.2 ≤ U (T ) < 0.3

[e] U (T ) > 0.3
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15. (MRQ, *) Which of the following statements are true in your experiment?

[a] Ein(gt) ≤ Ein(GT ) for all t = 1, 2, . . . , T

[b] Ein(Gt) is non-increasing in t

[c] Eout(Gt) is non-increasing in t

[d] U (t) is non-increasing in t

[e] αt is non-increasing in t

Experiments with Unpruned Decision Tree

.

Implement the simple C&RT algorithm without pruning using the Gini index as the impurity measure
as introduced in the class. For the decision stump used in branching, if you are branching with feature
i and direction s, please sort all the xn,i values to form (at most) N + 1 segments of equivalent θ, and
then pick θ within the median of the segment.

Run the algorithm on the following set for training:

http://www.csie.ntu.edu.tw/~htlin/course/ml14fall/hw6/hw6_train.dat

and the following set for testing:

http://www.csie.ntu.edu.tw/~htlin/course/ml14fall/hw6/hw6_test.dat

16. (MCQ, *) How many branch functions are there in the tree?

[a] 6

[b] 8

[c] 10

[d] 12

[e] 14

17. (MCQ, *) Which of the following is closest to the Ein (evaluated with 0/1 error) of the tree?

[a] 0.0

[b] 0.1

[c] 0.2

[d] 0.3

[e] 0.4

18. (MCQ, *) Which of the following is closest to the Eout (evaluated with 0/1 error) of the tree?

[a] 0.00

[b] 0.05

[c] 0.15

[d] 0.25

[e] 0.35

Now implement the Bagging algorithm and couple it with your decision tree above to make a
preliminary random forest GRF . Produce T = 300 trees with bagging. Repeat the experiment for
100 times and compute average Ein and Eout using the 0/1 error.

19. (MCQ, *) Which of the following is true about the average Eout(GRF )

[a] 0.13 ≤ Eout(GRF ) < 0.16
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[b] 0.10 ≤ Eout(GRF ) < 0.13

[c] 0.07 ≤ Eout(GRF ) < 0.10

[d] 0.04 ≤ Eout(GRF ) < 0.07

[e] Eout(GRF ) ≤ 0.04

20. (MRQ, *) Let gt be each tree in your random forest above, and Gt be the uniform aggregation of
the first t trees. Which of the followings are true?

[a] Eout(gt) ≥ Eout(GRF ) for t = 1, 2, . . . , T

[b] Eout(Gt) ≥ Eout(GRF ) for t = 1, 2, . . . , T

[c] the average of Ein(gt) is non-increasing with t

[d] the average of Eout(gt) is non-increasing with t

[e] the variance of Eout(gt) is non-increasing with t

Bonus: More about AdaBoost

21. (BBQ, 10 points) Prove or disprove the following claim: “when running the AdaBoost algorithm
and getting g1, g2, . . . , gT , all those gt’s are always different.”

22. (BBQ, 10 points) Prove or disprove the following claim: “any G found by AdaBoost-Stump can
be equivalently expressed as a decision tree.”
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Answer guidelines. First, please write down your name and school ID number.

Name: School ID:

Then, fill in your answers for MCQ, MRQ and BFQ in the table below.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

Lastly, please write down your solution to those (+ . . .) parts and bonus problems, using as many
additional pages as you want.

Each problem is of 10 points.

• For Problem with (+ . . .), the answer in the table is of 3 score points, and the (+ . . .) part is of 7
score points. If your solution to the (+ . . .) part is clearly different from your answer in the table,
it is regarded as a suspicious violation of the class policy (plagiarism) and the TAs can deduct
some more points based on the violation.

• For Problem without (+ . . .), the problem is of 10 points by itself and the TAs can decide to give
you partial credit or not as long as it is fair to the whole class.
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