
Machine Learning (NTU, Fall 2014) instructor: Hsuan-Tien Lin

Homework #5
RELEASE DATE: 12/03/2014

DUE DATE: 12/18/2014, BEFORE NOON

QUESTIONS ABOUT HOMEWORK MATERIALS ARE WELCOMED ON THE COURSERA
FORUM.

Unless granted by the instructor in advance, you must turn in a printed/written copy of your solutions
(without the source code) for all problems. For problems marked with (*), please follow the guidelines
on the course website and upload your source code to designated places. You are encouraged to (but
not required to) include a README to help the TAs check your source code. Any programming lan-
guage/platform is allowed.

Any form of cheating, lying, or plagiarism will not be tolerated. Students can get zero scores and/or fail
the class and/or be kicked out of school and/or receive other punishments for those kinds of misconducts.

Discussions on course materials and homework solutions are encouraged. But you should write the final
solutions alone and understand them fully. Books, notes, and Internet resources can be consulted, but
not copied from.

Since everyone needs to write the final solutions alone, there is absolutely no need to lend your homework
solutions and/or source codes to your classmates at any time. In order to maximize the level of fairness
in this class, lending and borrowing homework solutions are both regarded as dishonest behaviors and will
be punished according to the honesty policy.

You should write your solutions in English or Chinese with the common math notations introduced in
class or in the problems. We do not accept solutions written in any other languages.

There are two kinds of regular problems.

• multiple-choice question (MCQ): There are several choices and only one of them is correct.
You should choose one and only one.

• multiple-response question (MRQ): There are several choices and none, some, or all of them
are correct. You should write down every choice that you think to be correct.

Some problems also come with (+ . . .) that contains additional todo items.
If there are big bonus questions (BBQ), please simply follow the problem guideline to write down your
solution, if you choose to tackle them.

This homework set comes with 200 points and 20 bonus points. In general, every home-
work set would come with a full credit of 200 points, with some possible bonus points.

Primal versus Dual Problem

1. (MCQ) Recall that N is the size of the data set and d is the dimensionality of the input space.
The primal formulation of the linear soft-margin support vector machine problem, without going
through the Lagrangian dual problem, is

[a] a quadratic programming problem with N variables

[b] a quadratic programming problem with N + d+ 1 variables

[c] a quadratic programming problem with d+ 1 variables

[d] a quadratic programming problem with 2N variables

[e] none of the other choices

(+ explanation of your choice)
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Transforms: Explicit versus Implicit

Consider the following training data set:

x1 = (1, 0), y1 = −1 x2 = (0, 1), y2 = −1 x3 = (0,−1), y3 = −1

x4 = (−1, 0), y4 = +1 x5 = (0, 2), y5 = +1 x6 = (0,−2), y6 = +1

x7 = (−2, 0), y7 = +1

2. (MCQ) Use following nonlinear transformation of the input vector x = (x1, x2) to the transformed
vector z = (φ1(x), φ2(x)):

φ1(x) = x22 − 2x1 + 3 φ2(x) = x21 − 2x2 − 3

What is the equation of the optimal separating “hyperplane” in the Z space?

[a] z1 + z2 = 4.5

[b] z1 − z2 = 4.5

[c] z1 = 4.5

[d] z2 = 4.5

[e] none of the other choices

(+ explanation of your choice)

3. (MRQ) Consider the same training data set, but instead of explicitly transforming the input space
X , apply the hard-margin support vector machine algorithm with the kernel function

K(x,x′) = (1 + xTx′)2,

which corresponds to a second-order polynomial transformation. Set up the optimization problem
using (α1, · · · , α7) and numerically solve for them (you can use any package you want). Which of
the followings are true about the optimal α?

[a] there are 6 nonzero αn

[b]
∑7
n=1 αn ≈ 2.8148

[c] max1≤n≤7 αn = α7

[d] min1≤n≤7 αn = α7

[e] none of the other choices

(+ the αn’s you get and explanation of your choices)

4. (MCQ) Following Question 3, what is the corresponding nonlinear curve in the X space?

[a] 1
9 (8x21 − 16x1 + 6x22 + 15) = 0

[b] 1
9 (8x21 − 16x1 + 6x22 − 15) = 0

[c] 1
9 (8x22 − 16x2 + 6x21 + 15) = 0

[d] 1
9 (8x22 − 16x2 + 6x21 − 15) = 0

[e] none of the other choices

(+ calculation steps of your choice)
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5. (MCQ) Compare the two nonlinear curves found in Questions 2 and 4, which of the following is
true?

[a] The curves should be the same in the X space, because they are learned from the same raw
data {(xn, yn)}

[b] The curves should be the same in the X space, because they are learned with respect to the
same Z space

[c] The curves should be different in the X space, because they are learned with respect to
different Z spaces

[d] The curves should be different in the X space, because they are learned from different raw
data {(xn, yn)}

[e] none of the other choices

(+ explanation of your choice)

Radius of Transformed Vectors via the Kernel

Recall that for support vector machines, dvc is upper bounded by R2

ρ2 , where ρ is the margin and R is the
radius of the minimum hypersphere that X resides in. In general, R should come from our knowledge on
the learning problem, but we can estimate it by looking at the minimum hypersphere that the training
examples resides in. In particular, we want to seek for the optimal R that solves

(P ) min
R∈R,c∈Rd

R2 subject to ‖xn − c‖2 ≤ R2 for n = 1, 2, · · · , N.

6. (MCQ) Let λn be the Lagrange multipliers for the n-th constraint above. Following the derivation
of the dual support vector machine in class, write down (P ) as an equivalent optimization problem

min
R∈R,c∈Rd

max
λn≥0

L(R, c,λ).

What is L(R, c,λ)?

[a] R2 −
∑N
n=1 λn(‖xn − c‖2 +R2)

[b] R2 −
∑N
n=1 λn(‖xn − c‖2 −R2)

[c] R2 +
∑N
n=1 λn(‖xn − c‖2 +R2)

[d] R2 +
∑N
n=1 λn(‖xn − c‖2 −R2)

[e] none of the other choices

(+ explanation of your choice)

7. (MRQ) Using (assuming) strong duality, the solution to (P ) would be the same as the Lagrange
dual problem

(D) max
λn≥0

min
R∈R,c∈Rd

L(R, c,λ).

Which of the following can be derived from the KKT conditions of (P ) and (D) at the optimal
(R, c,λ)?

[a] if R 6= 0, then
∑N
n=1 λn = 1

[b] if λn = 0, then ‖xn − c‖2 −R2 = 0

[c] if ‖xn − c‖2 −R2 < 0, then λn = 0

[d] if
∑N
n=1 λn 6= 0, then c =

(∑N
n=1 λnxn

)/(∑N
n=1 λn

)
[e] none of the other choices

(+ explanation of your choices)
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8. (MCQ) Assuming that all the xn are different, which implies that the optimal R > 0. Using the
KKT conditions to simplify the Lagrange dual problem, and obtain a dual problem that involves
only λn. One form of the dual problem should look like

(D′) min
λn≥0

Objective(λ) subject to

N∑
n=1

λn = constant

Which of the following is Objective(λ)?

[a]
∑N
n=1 λn(‖xn −

∑N
m=1 λmxm‖2)

[b]
∑N
n=1 λn(‖xn +

∑N
m=1 λmxm‖2)

[c]
∑N
n=1 λn(‖xn −

∑N
m=1 λmxm‖2) + 2(

∑N
n=1 λnxn)2

[d]
∑N
n=1 λn(‖xn +

∑N
m=1 λmxm‖2) + 2(

∑N
n=1 λnxn)2

[e] none of the other choices

(+ derivation steps of your choice)

9. (MCQ) Consider using zn = φ(xn) instead of xn while assuming that all the zn are different.
Then, write down the optimization problem that uses K(xn,xm) to replace zTnzm—that is, the
kernel trick. Which of the following is Objective(λ) of (D′) after applying the kernel trick?

[a]
∑N
n=1 λnK(xn,xn) + 3

∑N
n=1

∑N
m=1 λnλmK(xn,xm)

[b]
∑N
n=1 λnK(xn,xn) + 1

∑N
n=1

∑N
m=1 λnλmK(xn,xm)

[c]
∑N
n=1 λnK(xn,xn)− 1

∑N
n=1

∑N
m=1 λnλmK(xn,xm)

[d]
∑N
n=1 λnK(xn,xn)− 3

∑N
n=1

∑N
m=1 λnλmK(xn,xm)

[e] none of the other choices

(+ derivation steps of your choice)

10. (MCQ) After solving the (D′) that involves the kernel K, which of the following formula evaluates
the optimal R?

[a] Pick some i with λi > 0, andR =
√
K(xi,xi)− 2

∑N
m=1 λmK(xi,xm) +

∑N
n=1

∑N
m=1 λnλmK(xn,xm)

[b] Pick some i with λi = 0, andR =
√
K(xi,xi)− 2

∑N
m=1 λmK(xi,xm) +

∑N
n=1

∑N
m=1 λnλmK(xn,xm)

[c] Pick some i with λi > 0, andR =
√
K(xi,xi) + 2

∑N
m=1 λmK(xi,xm) +

∑N
n=1

∑N
m=1 λnλmK(xn,xm)

[d] Pick some i with λi = 0, andR =
√
K(xi,xi) + 2

∑N
m=1 λmK(xi,xm) +

∑N
n=1

∑N
m=1 λnλmK(xn,xm)

[e] none of the other choices

(+ derivation steps of your choice)

Dual Problem of `2 Loss Soft-Margin Support Vector Machines

In the class, we taught the soft-margin support vector machine as follows.

(P1) min
w,b,ξ

1

2
wTw + C

N∑
n=1

ξn

subject to yn

(
wTxn + b

)
≥ 1− ξn,

ξn ≥ 0.
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The support vector machine (called `1 loss) penalizes the margin violation linearly. Another popular
formulation (called `2 loss) penalizes the margin violation quadratically. In this problem, we show one
simple approach for deriving the dual of such a formulation. The formulation is as follows.

(P ′2) min
w,b,ξ

1

2
wTw + C

N∑
n=1

ξ2n

subject to yn

(
wTxn + b

)
≥ 1− ξn,

ξn ≥ 0.

It is not hard to see that the constraints ξn ≥ 0 are not necessary for the new formulation. In other
words, the formulation (P ′2) is equivalent to the following optimization problem.

(P2) min
w,b,ξ

1

2
wTw + C

N∑
n=1

ξ2n

subject to yn

(
wTxn + b

)
≥ 1− ξn.

11. (MCQ) Problem (P2) is equivalent to a linear hard-margin support vector machine (primal problem)
that takes examples (x̃n, yn) instead of (xn, yn). That is, the hard-margin dual problem that
involves x̃n is simply the dual problem of (P2). Which of the following is x̃n? (Hint: let w̃ =
(w, constant · ξ))

[a] x̃n = (xn, v1, v2, · · · , vN ), where vi = 1√
2C

Ji = nK

[b] x̃n = (xn, v, v, · · · , v), where there are N components of v = 1√
2C

[c] x̃n = (xn, v1, v2, · · · , vN ), where vi = 1√
C

Ji = nK

[d] x̃n = (xn, v, v, · · · , v), where there are N components of v = 1√
C

[e] none of the other choices

(+ proof of your choice)

Operation of Kernels

Let K1(x,x′) = φ1(x)Tφ1(x′) and K2(x,x′) = φ2(x)Tφ2(x′) be two valid kernels.

12. (MRQ) Which of the followings are always valid kernels, assuming that K2(x,x′) 6= 0 for all x
and x′?

[a] K(x,x′) = K1(x,x′) +K2(x,x′)

[b] K(x,x′) = K1(x,x′)−K2(x,x′)

[c] K(x,x′) = K1(x,x′) ·K2(x,x′)

[d] K(x,x′) = K1(x,x′)/K2(x,x′)

[e] none of the other choices

(+ proof of your choices)

13. (MRQ) Which of the followings are always valid kernels?

[a] K(x,x′) = (1−K1(x,x′))2

[b] K(x,x′) = 1126 ·K1(x,x′)

[c] K(x,x′) = exp(−K1(x,x′))

[d] K(x,x′) = (1−K1(x,x′))−1, assuming that 0 < K1(x,x′) < 1

[e] none of the other choices

(+ proof of your choices)
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Kernel Scaling and Shifting

For a given valid kernel K, consider a new kernel K̃(x,x′) = pK(x,x′) + q for some p > 0 and q > 0.

14. (MCQ) Which of the following statement is true?

[a] For the dual of soft-margin support vector machine, using K̃ along with a new C̃ = pC instead
of K with the original C leads to an equivalent gsvm classifier.

[b] For the dual of soft-margin support vector machine, using K̃ along with a new C̃ = pC + q
instead of K with the original C leads to an equivalent gsvm classifier.

[c] For the dual of soft-margin support vector machine, using K̃ along with a new C̃ = C
p instead

of K with the original C leads to an equivalent gsvm classifier.

[d] For the dual of soft-margin support vector machine, using K̃ along with a new C̃ = C
p + q

instead of K with the original C leads to an equivalent gsvm classifier.

[e] none of the other choices

(+ proof of your choice)

Experiments with Soft-Margin Support Vector Machine

Next, we are going to experiment with a real-world data set. Download the processed US Postal Service
Zip Code data set with extracted features of symmetry and intensity for training and testing:

http://www.amlbook.com/data/zip/features.train

http://www.amlbook.com/data/zip/features.test

The format of each row is

digit symmetry intensity

We will consider binary classification problems of the form “one of the digits” (as the positive class)
versus “other digits” (as the negative class).

The training set contains thousands of examples, and some quadratic programming packages cannot
handle this size. We recommend that you consider the LIBSVM package

http://www.csie.ntu.edu.tw/~cjlin/libsvm/

Regardless of the package that you choose to use, please read the manual of the package carefully to
make sure that you are indeed solving the soft-margin support vector machine taught in class like the
dual formulation below:

min
α

1

2

N∑
n=1

N∑
m=1

αnαmynymK(xn,xm)−
N∑
n=1

αn

s.t.

N∑
n=1

ynαn = 0

0 ≤ αn ≤ C n = 1, · · · , N

In the following questions, please use the 0/1 error for evaulating Ein, Eval and Eout (through the test
set). Some practical remarks include

(i) Please tell your chosen package to not automatically scale the data for you, lest you should change
the effective kernel and get different results.

(ii) It is your responsibility to check whether your chosen package solves the designated formulation
with enough numerical precision. Please read the manual of your chosen package for software
parameters whose values affect the outcome—any ML practitioner needs to deal with this kind of
added uncertainty.
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15. (MCQ, *) Consider the linear soft-margin SVM. That is, either solve the primal formulation of
soft-margin SVM with the given xn, or take the linear kernel K(xn,xm) = xT

nxm in the dual
formulation. With C = 0.01, and the binary classification problem of “0” versus “not 0”, which of
the following numbers is closest to ‖w‖ after solving the linear soft-margin SVM?

[a] 0.2

[b] 0.6

[c] 1.0

[d] 1.4

[e] 1.8

16. (MCQ, *) Consider the polynomial kernel K(xn,xm) = (1 +xT
nxm)Q, where Q is the degree of the

polynomial. With C = 0.01, Q = 2, which of the following soft-margin SVM classifiers reaches the
lowest Ein?

[a] “0” versus “not 0”

[b] “2” versus “not 2”

[c] “4” versus “not 4”

[d] “6” versus “not 6”

[e] “8” versus “not 8”

17. (MCQ, *) Following Question 16, which of the following numbers is closest to the maximum∑N
n=1 αn within those five soft-margin SVM classifiers?

[a] 5.0

[b] 10.0

[c] 15.0

[d] 20.0

[e] 25.0

18. (MRQ, *) Consider the Gaussian kernel K(xn,xm) = exp
(
−γ||xn − xm||2

)
. With γ = 100, and the

binary classification problem of “0” versus “not 0”. Consider values of C within {0.001, 0.01, 0.1, 1, 10}.
Which of the following properties of the soft-margin SVM classifier strictly decreases with C?

[a] the distance of any unbounded support vector to the hyperplane in the (infinite-dimensional)
Z space

[b]
∑N
n=1 ξn

[c] number of support vectors

[d] Eout

[e] the objective value of the dual problem

19. (MCQ, *) Following Question 18, when fixing C = 0.1, which of the following values of γ results
in the lowest Eout?

[a] 1

[b] 10

[c] 100

[d] 1000

[e] 10000

20. (MCQ, *) Following Question 18 and consider a validation procedure that randomly samples 1000
examples from the training set for validation and leaves the other examples for training g−svm. Fix
C = 0.1 and use the validation procedure to choose the best γ among {1, 10, 100, 1000, 10000}
according to Eval. If there is a tie of Eval, choose the smallest γ. Repeat the procedure 100 times.
Which of the following values of γ is selected the most number of times?
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[a] 1

[b] 10

[c] 100

[d] 1000

[e] 10000

Bonus: Properties of Soft-Margin SVM

21. (BBQ, 10 points) For the linear soft-margin SVM, if there is no free support vector after training,
can we conclude that the data is not linearly separable?

22. (BBQ, 10 points) For the linear soft-margin SVM, if there is no free support vector after training,
and all the bounded support vectors satisfy ξn > 1, can we conclude that the data is not linearly
separable?
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Answer guidelines. First, please write down your name and school ID number.

Name: School ID:

Then, fill in your answers for MCQ, MRQ and BFQ in the table below.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

Lastly, please write down your solution to those (+ . . .) parts and bonus problems, using as many
additional pages as you want.

Each problem is of 10 points.

• For Problem with (+ . . .), the answer in the table is of 3 score points, and the (+ . . .) part is of 7
score points. If your solution to the (+ . . .) part is clearly different from your answer in the table,
it is regarded as a suspicious violation of the class policy (plagiarism) and the TAs can deduct
some more points based on the violation.

• For Problem without (+ . . .), the problem is of 10 points by itself and the TAs can decide to give
you partial credit or not as long as it is fair to the whole class.
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