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Random Forest

Roadmap

1 Embedding Numerous Features: Kernel Models
2 Combining Predictive Features: Aggregation Models

Lecture 9: Decision Tree
recursive branching (purification) for conditional

aggregation of constant hypotheses

Lecture 10: Random Forest
Random Forest Algorithm
Out-Of-Bag Estimate
Feature Selection
Theory versus Practice

3 Distilling Implicit Features: Extraction Models
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Random Forest Random Forest Algorithm

Recall: Bagging and Decision Tree

Bagging
function Bag(D,A)
For t = 1,2, . . . ,T

1 request size-N ′ data D̃t by
bootstrapping with D

2 obtain base gt by A(D̃t)

return G = Uniform(gt)

—reduces variance
by voting/averaging

Decision Tree
function DTree(D)
if termination return base gt
else

1 learn b(x) and split D to
Dc by b(x)

2 build Gc ← DTree(Dc)

3 return G(x) =
C∑

c=1
Jb(x) = cK Gc(x)

—large variance
especially if fully-grown

putting them together?
(i.e. aggregate of aggregation :-) )
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Random Forest Random Forest Algorithm

Random Forest (RF)
random forest (RF) = bagging + fully-grown C&RT decision tree

function RandomForest(D)
For t = 1,2, . . . ,T

1 request size-N ′ data D̃t by
bootstrapping with D

2 obtain tree gt by DTree(D̃t)

return G = Uniform(gt)

function DTree(D)
if termination return base gt
else

1 learn b(x) and split D to
Dc by b(x)

2 build Gc ← DTree(Dc)

3 return G(x) =
C∑

c=1
Jb(x) = cK Gc(x)

• highly parallel/efficient to learn
• inherit pros of C&RT
• eliminate cons of fully-grown tree
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Random Forest Random Forest Algorithm

Diversifying by Feature Projection
recall: data randomness for diversity in bagging

randomly sample N ′ examples from D

other possibility for diversity:

randomly sample d ′ features from x

• sampled index i1, i2, . . . , id ′ : Φ(x) = (xi1 , xi2 , . . . , xid′ )

• Z ∈ Rd ′ : a random subspace of X ∈ Rd

• often d ′ � d , efficient when d large
—can be generally used for other learning models

• original RF re-sample new subspace for each b(x) in C&RT

RF = bagging + random-subspace C&RT
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Random Forest Random Forest Algorithm

Diversifying by Feature Expansion
randomly sample d ′ features from x: Φ(x) = P · x

with row i of P picked randomly ∈ natural basis

more powerful features for diversity: row i other than natural basis
• low-dimensional random projection (combination) with v:

φi(x) =
d ′′∑

j=1

vjxj

• includes random subspace as special case: d ′′ = 1 and v1 = 1
• original RF consider d ′ random combinations for each b(x) in

C&RT

RF = bagging + random-combination C&RT
—randomness everywhere!
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Random Forest Random Forest Algorithm

Fun Time

Within RF that contains random-combination C&RT trees, which of the
following hypothesis is equivalent to each branching function b(x)
within the tree?

1 a constant
2 a decision stump
3 a perceptron
4 none of the other choices

Reference Answer: 3

In each b(x), the input vector x is first
projected by a random vector v and then
thresholded to make a binary decision, which
is exactly what a perceptron does.
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Random Forest Out-Of-Bag Estimate

Bagging Revisited

Bagging
function Bag(D,A)
For t = 1,2, . . . ,T

1 request size-N ′ data D̃t
by bootstrapping with D

2 obtain base gt by A(D̃t)

return G = Uniform(gt)

g1 g2 g3 · · · gT

(x1, y1) D̃1 ? D̃3 D̃T

(x2, y2) ? ? D̃3 D̃T

(x3, y3) ? D̃1 ? D̃T

· · ·
(xN , yN) D̃1 D̃2 ? ?

?: not used for obtaining gt
—called out-of-bag (OOB) examples
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Random Forest Out-Of-Bag Estimate

Number of OOB Examples
OOB (in ?)⇐⇒ not sampled after N ′ drawings

if N ′ = N

• probability for (xn, yn) to be OOB for gt :
(
1− 1

N

)N

• if N large:

(
1− 1

N

)N

=
1

(
N

N−1

)N =
1

(
1 + 1

N−1

)N ≈
1
e

OOB size per gt ≈ 1
e N
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Random Forest Out-Of-Bag Estimate

OOB versus Validation

OOB
g1 g2 g3 · · · gT

(x1, y1) D̃1 ? D̃3 D̃T

(x2, y2) ? ? D̃3 D̃T

(x3, y3) ? D̃1 ? D̃T

· · ·
(xN , yN) D̃1 D̃2 ? ?

Validation
g−

1 g−
2 · · · g−

M

Dtrain Dtrain Dtrain

Dval Dval Dval

Dval Dval Dval

Dtrain Dtrain Dtrain

• ? like Dval: ‘enough’ random examples unused during training
• use ? to validate gt? easy, but rarely needed
• use ? to validate G? Eoob(G) = 1

N
∑N

n=1 err(yn,G−n (xn)),
with G−n contains only trees that xn is OOB of

Eoob: self-validation of bagging/RF
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Random Forest Out-Of-Bag Estimate

Model Selection by OOB Error

Previously: by Best Eval

gm∗ = Am∗(D)
m∗ = argmin

1≤m≤M
Em

Em = Eval(Am(Dtrain))

H1 H2 HM

g1 g2 gM· · ·

· · ·

E1 · · · EM

Dval

Dtrain

gm∗

E2

(Hm∗ , Em∗)

︸ ︷︷ ︸
pick the best

D

RF: by Best Eoob

Gm∗ = RFm∗(D)
m∗ = argmin

1≤m≤M
Em

Em = Eoob(RFm(D))
• use Eoob for self-validation
• no re-training needed

Eoob often accurate in practice
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Random Forest Out-Of-Bag Estimate

Fun Time

For a data set with N = 1126, what is the probability that (x1126, y1126)
is not sampled after bootstrapping N ′ = N samples from the data set?

1 0.113
2 0.368
3 0.632
4 0.887

Reference Answer: 2

The value of (1− 1
N )N with N = 1126 is about

0.367716, which is close to 1
e = 0.367879.
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Random Forest Feature Selection

Feature Selection
for x = (x1, x2, . . . , xd), want to remove
• redundant features: like keeping one of ‘age’ and ‘full birthday’
• irrelevant features: like insurance type for cancer prediction

and only ‘learn’ subset-transform Φ(x) = (xi1 , xi2 , xid′ ) with d ′ < d for
g(Φ(x))

advantages:
• efficiency: simpler

hypothesis and shorter
prediction time

• generalization: ‘feature
noise’ removed

• interpretability

disadvantages:
• computation:

‘combinatorial’ optimization
in training

• overfit: ‘combinatorial’
selection

• mis-interpretability

decision tree: a rare model
with built-in feature selection
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Random Forest Feature Selection

Feature Selection by Importance

idea: if possible to calculate

importance(i) for i = 1,2, . . . ,d

then can select i1, i2, . . . , id ′ of top-d ′ importance

importance by linear model

score = wT x =
d∑

i=1

wixi

• intuitive estimate: importance(i) = |wi | with some ‘good’ w
• getting ‘good’ w: learned from data
• non-linear models? often much harder

next: ‘easy’ feature selection in RF
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Random Forest Feature Selection

Feature Importance by Permutation Test

idea: random test
—if feature i needed, ‘random’ values of xn,i degrades performance

• which random values?
• uniform, Gaussian, . . .: P(xi) changed
• bootstrap, permutation (of {xn,i}N

n=1): P(xi) approximately
remained

• permutation test:

importance(i) = performance(D)− performance(Dp)

with Dp containing permuted {xn,i}Nn=1

permutation test: a general statistical tool for
arbitrary non-linear models like RF
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Random Forest Feature Selection

Feature Importance in Original Random Forest
permutation test:

importance(i) = performance(D)− performance(Dp)

with Dp containing permuted {xn,i}Nn=1

• calculating performance needs re-training and validating on each
Dp in general

• how to ‘escape’ validation? OOB in RF
• original RF solution:

importance(i) = Eoob(G,D)− Eoob(G,Dp)

with Dp ‘dynamically’ containing permuted {xn,i : n OOB} for gt

original RF solution often efficient and
promising in practice

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 15/20



Random Forest Feature Selection

Fun Time

For RF, if the 1126-th feature within the data set is a constant 5566,
what would importance(i) be?

1 0
2 1
3 1126
4 5566

Reference Answer: 1

When a feature is a constant, permutation
does not change its value. Then,
performance(G,D) and performance(G,Dp)
are the same, and thus importance(i) = 0.
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Random Forest Theory versus Practice

Theory: Does Diversity Help?
strength-correlation decomposition (classification):

lim
T→∞

Eout(G) ≤ ρ ·
(

1− s2

s2

)

• strength: average voting margin within G
• correlation: similarity between gt

• similar for regression (bias-variance decomposition)

RF good if diverse and strong
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Random Forest Theory versus Practice

Practice: How Many Trees Needed?
theory: the more, the ‘better’

• NTU KDDCup 2013 Track 1: predicting author-paper relation
• 1− Eval of thousands of trees: [0.981,0.985] depending on seed;

1− Eout of top 20 teams: [0.98130,0.98554]
• decision: take 12000 trees with seed 1

cons of RF: may need lots of trees if random
process too unstable
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Random Forest Theory versus Practice

Fun Time

The strength s is a value between [0,1]. For a fixed ρ, which value of s
results in the minimum upper bound for the limiting Eout(G)?

1 1.0
2 0.5
3 0.0
4 none of the other choices

Reference Answer: 1

Too simple, huh? :-)
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Random Forest Theory versus Practice

Summary

1 Embedding Numerous Features: Kernel Models
2 Combining Predictive Features: Aggregation Models

Lecture 10: Random Forest
Random Forest Algorithm

bag of trees on randomly projected subspaces
Out-Of-Bag Estimate

self-validation with oob examples
Feature Selection

permutation test for feature importance
Theory versus Practice

more or not? that’s the question!

• next: boosted decision trees beyond classification

3 Distilling Implicit Features: Extraction Models
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