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Deep Learning

Agenda

Lecture 12: Deep Learning

Optimization and Overfitting
Auto Encoder

Principle Component Analysis
Denoising Auto Encoder
Deep Neural Network
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Deep Learning Optimization and Overfitting

Error Function of Neural Network

N
1
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¢ generally non-convex when multiple hidden layers
e not easy to reach global minimum
o GD/SGD with backprop only gives local minimum
o different initial wy — different local minimum
e somewhat ‘sensitive’ to initial weights
¢ large weights — saturate (small gradient)
e advice: try some random & small ones

neural network (NNet):
difficult to optimize, but practically works J
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Deep Learning Optimization and Overfitting

VC Dimension of Neural Networks

roughly, with 6-like transfer functions:
dvc = O(Dlog D) where D = # of weights

e can implement ‘anything’ if enough neurons (D large)
—no need for many layers?

e can overfit if too many neurons

NNet: watch out for overfitting! |
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Deep Learning Optimization and Overfitting

Regularization for Neural Network
basic choice:

2
old friend weight-decay (L2) regularizer Q(w) = > (ng)>

¢ ‘shrink’ weights:
large weight — large shrink; small weight — small shrink

e want w,.j(.f) = 0 (sparse) to effectively decrease d\¢

o L1 regularizer: ’w,/(.f)), but not differentiable

e weight-elimination (‘scaled’ L2) regularizer:
large weight — median shrink; small weight — median shrink

()2
weight-elimination regularizer: M

52+ (w")’ J
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Deep Learning Optimization and Overfitting

Yet Another Regularization: Early Stopping

GD/SGD (backprop) visits
more weight combinations as f increases

o smaller t effectively decrease dyc

o better ‘stop in the middle’:
early stopping

when to stop? validation! J
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Deep Learning Optimization and Overfitting

Fun Time



Deep Learning Auto Encoder

Learning the ldentity Function
identity function: f(x) = x

« a vector function composed of f;(x) = x;
e learning each f;: regression with data

(X1, y1 = X1,1), (X2, Yo = Xa,), - - -, (XN; YN = XN,i)
e learning f: learning f; jointly with data

(X1,¥1 = X1), (X2, Y2 = X2), ..., (XN, YN = XN)

but wait, why learning something
known & easily implemented? :-)
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Deep Learning Auto Encoder

Why Learning ldentity Function

if g(x) ~ f(x) using some hidden structures on the observed data x,
e for unsupervised learning:

o density estimation: larger (structure match) when g(x) ~ x better
« outlier detection: those x where g(x) # x

—learning ‘typical’ representation of data
o for supervised learning:
o hidden structure: essence of x that can be used as ®(x)
—Ilearning ‘informative’ representation of data

auto-encoder:
NNet for learning identity function J

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 8/22



Deep Learning Auto Encoder

Simple Auto-Encoder
simple auto-encoder: a d-d-d NNet J

d outputs: backprop easily applies

d < d: compressed representation;

d > d: [over]-complete representation

o data: (X1,Y1 = Xq),(X2,Y2 = X2),. .., (Xn, YN = Xn)
—often categorized as unsupervised learning technique

« if x contain binary bits,

e naive solution exists (but unwanted) when [over]-complete
e regularized weights needed in general

e sometimes constrain w,.(.1) = w.(,z) as ‘regularization’
—more sophisticated in calculating gradient

auto-encoder for representation learning:
outputs of hidden neurons serve as ®(x) J
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Deep Learning Auto Encoder

Fun Time



Deep Learning Principle Component Analysis

Linear Auto-Encoder Hypothesis

9<Zw,$f (i ))

consider three special conditions:

e constrain w(” W/E ) — w; as ‘regularization’
—let W = [W,j] of size d x d
¢ () does nothing (like linear regression)

e d<d

linear auto-encoder hypothesis:

h(x) = x"ww’
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Deep Learning Principle Component Analysis

Linear Auto-Encoder Error Function
. 1 112
B = e

let WW' = VAV such that V'V = I and A a diagonal matrix of rank at
most d (eigenvalue decomposition)

7 2
HX _ XVAV H
F
T T T
— trace ((X — XVAV ) (X _ XVAV ))
— trace <XTX — XTXVAVT — VAVTXTX + V/\VTXTXV/\VT>
— trace (XTX —AVTXTXV - AVTXTXV + /\VTXTXV/\VTV>
— trace (VTXTXV “AVTXTXV = AVIXTXV + /\2VTXTXV)

— trace <(I N VTXTXV)
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Deep Learning Principle Component Analysis

Linear Auto-Encoder Algorithm

min  trace ((I — N VTXTXV>

)

« optimal rank-d A contains d ‘1" and d — d ‘0’

e let X"X = UXUT (eigenvalue decomposition), V = U with
(smallest o; <= \; = 1) is optimal

 so optimal column vectors w; = v; = top eigen vectors of XX

v

optimal linear auto-encoding = principal component analysis (PCA)
with w; being principal components of unshifted data
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Deep Learning Principle Component Analysis

Fun Time



Deep Learning Denoising Auto Encoder

Simple Auto-Encoder Revisited

simple auto-encoder: a d-d-d NNet

¢ want: hidden structure to capture essence of x
¢ naive solution exists (but unwanted) when [over]-complete
e regularized weights needed in general

regularization towards
more robust hidden structure? J
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Deep Learning Denoising Auto Encoder

Idea of Denoising Auto-Encoder

robust hidden structure should allow g(x) ~ x
even when x slightly different from x

e denoising auto-encoder: run auto-encoder
with data (X1,y1 = X1), (X2,¥2 = X2), ..., (Xn, YN = XN),
where X, = x,-+ artificial noise

o PCA auto-encoder + Gaussian noise:

min - Ein(W) = 1N HX — (X + noise) WWTHi

—simply L2-regularized PCA

artificial noise as regularization!
—practically also useful for other types of NNetJ
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Deep Learning Denoising Auto Encoder

Fun Time



Deep Learning Deep Neural Network

Final remark: hidden layers

learned nonlinear transform

interpretation?

Learning From Data - Lecture 10 21/21

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 18/22



Deep Learning Deep Neural Network

Shallow versus Deep Structures
shallow: few hidden layers; deep: many hidden layers ]

« efficient e challenging to train

o powerful if enough neurons e needing more structural
(model) decisions

e ‘meaningful’?

deep structure (deep learning)
re-gain attention recently
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Deep Learning Deep Neural Network

Key Techniques behind Deep Learning

(usually) unsupervised pre-training between hidden layers, such
as simple/denoising auto-encoder

—viewing hidden layers as ‘condensing’ low-level representation
to high-level one

e fine-tune with backprop after initializing with those ‘good’
weights
—because direct backprop may get stuck more easily

¢ speed-up: better optimization algorithms, and faster GPU
e generalization issue less serious with big (enough) data

currently very useful
for vision and speech recognition
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Deep Learning Deep Neural Network

Fun Time



Deep Learning Deep Neural Network

Summary

Lecture 12: Deep Learning

e Optimization and Overfitting

Auto Encoder

Principle Component Analysis

Denoising Auto Encoder

Deep Neural Network
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