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Deep Learning

Agenda

Lecture 12: Deep Learning
Optimization and Overfitting
Auto Encoder
Principle Component Analysis
Denoising Auto Encoder
Deep Neural Network
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Deep Learning Optimization and Overfitting

Error Function of Neural Network
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• generally non-convex when multiple hidden layers
• not easy to reach global minimum
• GD/SGD with backprop only gives local minimum

• different initial w0 =⇒ different local minimum
• somewhat ‘sensitive’ to initial weights
• large weights =⇒ saturate (small gradient)
• advice: try some random & small ones

neural network (NNet):
difficult to optimize, but practically works
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Deep Learning Optimization and Overfitting

VC Dimension of Neural Networks
roughly, with θ-like transfer functions:

dVC = O(D log D) where D = # of weights

• can implement ‘anything’ if enough neurons (D large)
—no need for many layers?

• can overfit if too many neurons

NNet: watch out for overfitting!
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Deep Learning Optimization and Overfitting

Regularization for Neural Network
basic choice:

old friend weight-decay (L2) regularizer Ω(w) =
∑(

w (`)
ij

)2

• ‘shrink’ weights:
large weight→ large shrink; small weight→ small shrink

• want w (`)
ij = 0 (sparse) to effectively decrease dVC

• L1 regularizer:
∑∣∣∣w (`)

ij

∣∣∣, but not differentiable
• weight-elimination (‘scaled’ L2) regularizer:

large weight→ median shrink; small weight→ median shrink

weight-elimination regularizer:
∑ (

w (`)
ij

)2

β2+
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ij

)2
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Deep Learning Optimization and Overfitting

Yet Another Regularization: Early Stopping
GD/SGD (backprop) visits

more weight combinations as t increases

• smaller t effectively decrease dVC

• better ‘stop in the middle’:
early stopping
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when to stop? validation!
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Deep Learning Optimization and Overfitting

Fun Time
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Deep Learning Auto Encoder

Learning the Identity Function
identity function: f(x) = x

• a vector function composed of fi(x) = xi

• learning each fi : regression with data
(x1, y1 = x1,i), (x2, y2 = x2,i), . . . , (xN , yN = xN,i)

• learning f: learning fi jointly with data
(x1,y1 = x1), (x2,y2 = x2), . . . , (xN ,yN = xN)

but wait, why learning something
known & easily implemented? :-)
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Deep Learning Auto Encoder

Why Learning Identity Function

if g(x) ≈ f(x) using some hidden structures on the observed data xn

• for unsupervised learning:
• density estimation: larger (structure match) when g(x) ≈ x better
• outlier detection: those x where g(x) 6≈ x

—learning ‘typical’ representation of data
• for supervised learning:

• hidden structure: essence of x that can be used as Φ(x)

—learning ‘informative’ representation of data

auto-encoder:
NNet for learning identity function
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Deep Learning Auto Encoder

Simple Auto-Encoder
simple auto-encoder: a d-d̃-d NNet

• d outputs: backprop easily applies
• d̃ < d : compressed representation;

d̃ ≥ d : [over]-complete representation
• data: (x1,y1 = x1), (x2,y2 = x2), . . . , (xN ,yN = xN)

—often categorized as unsupervised learning technique
• if x contain binary bits,

• naïve solution exists (but unwanted) when [over]-complete
• regularized weights needed in general

• sometimes constrain w (1)
ij = w (2)

ji as ‘regularization’
—more sophisticated in calculating gradient

auto-encoder for representation learning:
outputs of hidden neurons serve as Φ(x)
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Deep Learning Auto Encoder

Fun Time
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Deep Learning Principle Component Analysis

Linear Auto-Encoder Hypothesis

hk (x) = θ
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)
consider three special conditions:

• constrain w (1)
ij = w (2)

ji = wij as ‘regularization’
—let W = [wij ] of size d × d̃

• θ does nothing (like linear regression)
• d̃ < d

linear auto-encoder hypothesis:

h(x) = xT WWT
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Deep Learning Principle Component Analysis

Linear Auto-Encoder Error Function
min
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Deep Learning Principle Component Analysis

Linear Auto-Encoder Algorithm

min
V,Λ

trace
(

(I− Λ)2 VT XT XV
)

• optimal rank-d̃ Λ contains d̃ ‘1’ and d − d̃ ‘0’
• let XT X = UΣUT (eigenvalue decomposition), V = U with

(smallest σi ⇐⇒ λj = 1) is optimal
• so optimal column vectors wj = vj = top eigen vectors of XT X

optimal linear auto-encoding ≡ principal component analysis (PCA)
with wj being principal components of unshifted data
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Deep Learning Principle Component Analysis

Fun Time
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Deep Learning Denoising Auto Encoder

Simple Auto-Encoder Revisited
simple auto-encoder: a d-d̃-d NNet

• want: hidden structure to capture essence of x
• naïve solution exists (but unwanted) when [over]-complete
• regularized weights needed in general

regularization towards
more robust hidden structure?
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Deep Learning Denoising Auto Encoder

Idea of Denoising Auto-Encoder
robust hidden structure should allow g(x̃) ≈ x

even when x̃ slightly different from x

• denoising auto-encoder: run auto-encoder
with data (x̃1,y1 = x1), (x̃2,y2 = x2), . . . , (x̃N ,yN = xN),
where x̃n = xn+ artificial noise

• PCA auto-encoder + Gaussian noise:

min
W

Ein(W) =
1
N

∥∥∥X− (X + noise) WWT
∥∥∥2

F

—simply L2-regularized PCA

artificial noise as regularization!
—practically also useful for other types of NNet
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Deep Learning Denoising Auto Encoder

Fun Time
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Deep Learning Deep Neural Network

Final remark: hidden layers
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Deep Learning Deep Neural Network

Shallow versus Deep Structures
shallow: few hidden layers; deep: many hidden layers

Shallow
• efficient
• powerful if enough neurons

Deep
• challenging to train
• needing more structural

(model) decisions
• ‘meaningful’?

deep structure (deep learning)
re-gain attention recently
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Deep Learning Deep Neural Network

Key Techniques behind Deep Learning

• (usually) unsupervised pre-training between hidden layers, such
as simple/denoising auto-encoder
—viewing hidden layers as ‘condensing’ low-level representation
to high-level one

• fine-tune with backprop after initializing with those ‘good’
weights
—because direct backprop may get stuck more easily

• speed-up: better optimization algorithms, and faster GPU
• generalization issue less serious with big (enough) data

currently very useful
for vision and speech recognition
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Deep Learning Deep Neural Network

Fun Time
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Deep Learning Deep Neural Network

Summary

Lecture 12: Deep Learning
Optimization and Overfitting

Auto Encoder

Principle Component Analysis

Denoising Auto Encoder

Deep Neural Network
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