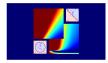
Machine Learning Techniques

(機器學習技巧)



Lecture 11: Neural Network

Hsuan-Tien Lin (林軒田)

htlin@csie.ntu.edu.tw

Department of Computer Science & Information Engineering

National Taiwan University (國立台灣大學資訊工程系)

Agenda

Lecture 11: Neural Network

- Random Forest: Theory and Practice
- Neural Network Motivation
- Neural Network Hypothesis
- Neural Network Training
- Deep Neural Networks

Theory: Does Diversity Help?

strength-correlation decomposition (classification):

$$\lim_{T\to\infty} E_{\text{out}}(G) \leq \frac{\rho}{\rho} \cdot \left(\frac{1-s^2}{s^2}\right)$$

- strength: average voting margin within G
- correlation: similarity between g_t
- similar for regression (bias-variance decomposition)

RF good if diverse and strong

Practice: How Many Trees Needed?

theory: the more, the 'better'

- NTU KDDCup 2013 Track 1: predicting author-paper relation
- 1 E_{val} of thousands of trees: [0.981, 0.985] depending on seed; 1 E_{out} of top 20 teams: [0.98130, 0.98554]
- decision: take 12000 trees with seed 1

cons of RF: may need lots of trees if random process too unstable

Fun Time

Disclaimer

Many parts of this lecture borrows Prof. Yaser S. Abu-Mostafa's slides with permission.

Learning From Data

Yaser S. Abu-Mostafa California Institute of Technology

Lecture 10: Neural Networks

Spionsored by Caltech's Provost Office, E&AS Division, and IST • Thursday, May 3, 2012

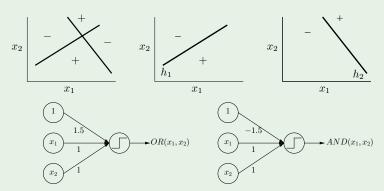
Biological inspiration

biological function \longrightarrow biological structure



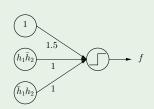
Learning From Data - Lecture 10

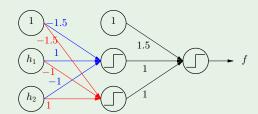
Combining perceptrons



Learning From Data - Lecture 10 9/21

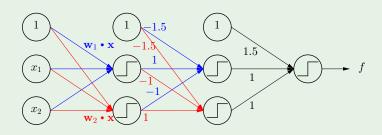
Creating layers





Learning From Data - Lecture 10 10/21

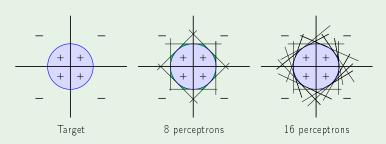
The multilayer perceptron



3 layers "feedforward"

Learning From Data - Lecture 10 111/21

A powerful model

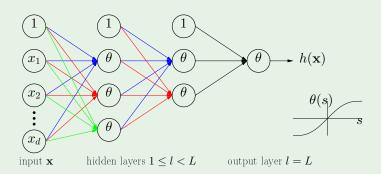


2 red flags for generalization and optimization

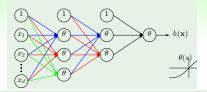
Learning From Data - Lecture 10 12/21

Fun Time

The neural network



Learning From Data - Lecture 10 13/21



How the network operates

$$w_{ij}^{(l)} \quad \begin{cases} 1 \leq l \leq L & \text{layers} \\ 0 \leq i \leq d^{(l-1)} & \text{inputs} \\ 1 \leq j \leq d^{(l)} & \text{outputs} \end{cases}$$

$$x_j^{(l)} = \theta(s_j^{(l)}) = \theta\left(\sum_{i=0}^{d^{(l-1)}} w_{ij}^{(l)} \; x_i^{(l-1)}\right)$$

Apply
$$\mathbf{x}$$
 to $x_1^{(0)} \cdots x_{d^{(0)}}^{(0)} \rightarrow \rightarrow x_1^{(L)} = h(\mathbf{x})$

$$\theta(s) = \tanh(s) = \frac{e^s - e^{-s}}{e^s + e^{-s}}$$

Fun Time

Applying SGD

All the weights
$$\mathbf{w} = \{w_{ij}^{(l)}\}$$
 determine $h(\mathbf{x})$

Error on example (\mathbf{x}_n,y_n) is

$$e(h(\mathbf{x}_n), y_n) = e(\mathbf{w})$$

To implement SGD, we need the gradient

$$abla {\sf e}({f w})$$
: $rac{\partial \ {\sf e}({f w})}{\partial \ w_{ij}^{(l)}}$ for all i,j,l

Learning From Data - Lecture 10

Computing
$$\frac{\partial \ \mathbf{e}(\mathbf{w})}{\partial \ w_{ij}^{(l)}}$$

We can evaluate $\dfrac{\partial \ \mathbf{e(w)}}{\partial \ w_{ij}^{(l)}}$ one by one: analytically or numerically

A trick for efficient computation:

$$\frac{\partial \ \mathbf{e}(\mathbf{w})}{\partial \ w_{ij}^{(l)}} = \frac{\partial \ \mathbf{e}(\mathbf{w})}{\partial \ s_{j}^{(l)}} \times \frac{\partial \ s_{j}^{(l)}}{\partial \ w_{ij}^{(l)}}$$

We have
$$\frac{\partial \, s_j^{(l)}}{\partial \, w_{ij}^{(l)}} = x_i^{(l-1)}$$
 We only need: $\frac{\partial \, \mathbf{e}(\mathbf{w})}{\partial \, s_j^{(l)}} = \, \pmb{\delta}_j^{(l)}$

x_i(1-1)

Learning From Data - Lecture 10

δ for the final layer

$$\delta_{j}^{(l)} = \frac{\partial \ \mathbf{e}(\mathbf{w})}{\partial \ s_{j}^{(l)}}$$

For the final layer l=L and j=1:

$$\delta_1^{(L)} = \frac{\partial e(\mathbf{w})}{\partial s_1^{(L)}}$$

$$e(\mathbf{w}) = (x_1^{(L)} - y_n)^2$$

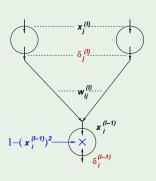
$$x_1^{(L)} = \theta(s_1^{(L)})$$

Learning From Data - Lecture 10

Back propagation of δ

$$\begin{split} \delta_i^{(l-1)} &= \frac{\partial \ \mathbf{e}(\mathbf{w})}{\partial \ s_i^{(l-1)}} \\ &= \sum_{j=1}^{d^{(l)}} \frac{\partial \ \mathbf{e}(\mathbf{w})}{\partial \ s_j^{(l)}} \times \frac{\partial \ s_j^{(l)}}{\partial \ x_i^{(l-1)}} \times \frac{\partial \ x_i^{(l-1)}}{\partial \ s_i^{(l-1)}} \\ &= \sum_{j=1}^{d^{(l)}} \ \delta_j^{(l)} \ \times \ w_{ij}^{(l)} \ \times \theta'(s_i^{(l-1)}) \end{split}$$

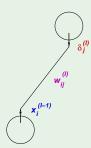
$$\delta_i^{(l-1)} = (1 - (x_i^{(l-1)})^2) \sum_{i=1}^{d^{(l)}} w_{ij}^{(l)} \delta_j^{(l)}$$



Learning From Data - Lecture 10

Backpropagation algorithm

- $_{\scriptscriptstyle 1:}$ Initialize all weights $w_{ij}^{(l)}$ at random
- $_{2:}$ for $t=0,1,2,\ldots$ do
- 3: Pick $n \in \{1,2,\cdots,N\}$
- 4: Forward: Compute all $x_i^{(l)}$
- 5: Backward: Compute all $\delta_i^{(l)}$
- Update the weights: $w_{ij}^{(l)} \leftarrow w_{ii}^{(l)} \eta \; x_i^{(l-1)} \delta_i^{(l)}$
- 7: Iterate to the next step until it is time to stop
- 8: Return the final weights $w_{ij}^{(l)}$



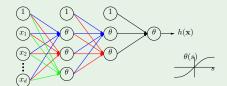
Learning From Data - Lecture 10

Fun Time

Final remark: hidden layers

learned nonlinear transform

interpretation?



Learning From Data - Lecture 10 21/21

Shallow versus Deep Structures

shallow: few hidden layers; deep: many hidden layers

Shallow

- efficient
- powerful if enough neurons

Deep

- challenging to train
- needing more structural (model) decisions
- · 'meaningful'?

deep structure (deep learning) re-gain attention recently

Key Techniques behind Deep Learning

- (usually) unsupervised pre-training between hidden layers,
 —viewing hidden layers as 'condensing' low-level representation to high-level one
- fine-tune with backprop after initializing with those 'good' weights
 - —because direct backprop may get stuck more easily
- speed-up: better optimization algorithms, and faster GPU

currently very useful for vision and speech recognition

Fun Time

Summary

Lecture 11: Neural Network

- Random Forest: Theory and Practice
- Neural Network Motivation
- Neural Network Hypothesis
- Neural Network Training
- Deep Neural Networks