Machine Learning Techniques (機器學習技巧)

Lecture 8: Adaptive Boosting

Hsuan-Tien Lin (林軒田) htlin@csie.ntu.edu.tw

Department of Computer Science & Information Engineering

National Taiwan University (國立台灣大學資訊工程系)

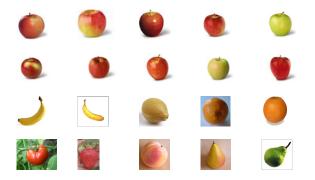
Agenda

Lecture 8: Adaptive Boosting

- Motivation of Boosting
- Diversify by Re-weighting
- Adaptive Boosting Algorithm
- Adaptive Boosting in Action

Apple Recognition Problem

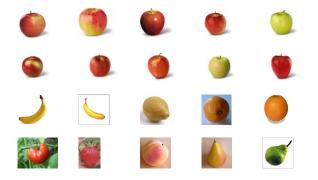
- is this a picture of an apple?
- say, want to teach a class of 6 year olds
- gather photos from NY Apple Asso. and Google Image



Motivation of Boosting

Our Fruit Class Begins

- Teacher: Please look at the pictures of apples and non-apples below. Based on those pictures, how would you describe an apple? Michael?
- Michael: I think apples are circular.

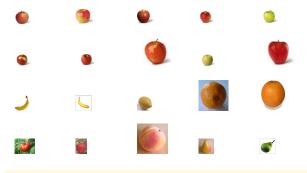


(Class): Apples are circular.

Hsuan-Tien Lin (NTU CSIE)

Our Fruit Class Continues

- Teacher: Being circular is a good feature for the apples. However, if you only say circular, you could make several mistakes. What else can we say for an apple? Tina?
- Tina: It looks like apples are red.



(Class): Apples are somewhat **circular** and somewhat **red**.

Hsuan-Tien Lin (NTU CSIE)

Our Fruit Class Continues

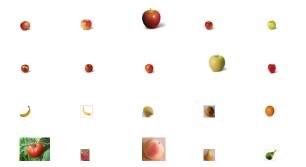
- Teacher: Yes. Many apples are red. However, you could still make mistakes based on circular and red. Do you have any other suggestions, Joey?
- Joey: Apples could also be green.

(Class): Apples are somewhat **circular** and somewhat **red** and possibly **green**.

Hsuan-Tien Lin (NTU CSIE)

Our Fruit Class Continues

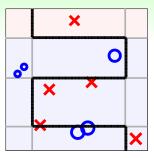
- Teacher: Yes. It seems that apples might be circular, red, green. But you may confuse them with tomatoes or peaches, right? Any more suggestions, Jessica?
- Jessica: Apples have stems at the top.



(Class): Apples are somewhat **circular**, somewhat **red**, possibly **green**, and may have **stems** at the top.

Hsuan-Tien Lin (NTU CSIE)

Motivation



- students: simple hypotheses g_t
- (Class): sophisticated hypothesis G
- Teacher: a tactic learning algorithm that direct the students to focus on key examples

next: the 'math' of such an algorithm

Hsuan-Tien Lin (NTU CSIE)

Motivation of Boosting

Fun Time

Bootstrapping as Re-weighting Process $\mathcal{D} = \{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), (\mathbf{x}_3, y_3), (\mathbf{x}_4, y_4)\}$ $\stackrel{\text{bootstrap}}{\Longrightarrow} \tilde{\mathcal{D}}_t = \{(\mathbf{x}_1, y_1), (\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), (\mathbf{x}_4, y_4)\}$

weighted E_{in} on \mathcal{D} E_{in} on \tilde{D}_{l} $E_{in}^{u}(h) = \frac{1}{4} \sum_{n=1}^{4} u_{n}^{(t)} \cdot [[y_{n} \neq h(\mathbf{x}_{n})]]$ $E_{in}^{0/1}(h) = \frac{1}{4} \sum_{(\mathbf{x}, y) \in \tilde{D}_{l}} [[y \neq h(\mathbf{x})]]$ $(\mathbf{x}_{1}, y_{1}), u_{1} = 2$ $(\mathbf{x}_{2}, y_{2}), u_{2} = 1$ $(\mathbf{x}_{3}, y_{3}), u_{3} = 0$ $(\mathbf{x}_{4}, y_{4}), u_{4} = 1$

each diverse g_t in bagging: by minimizing bootstrap-weighted error

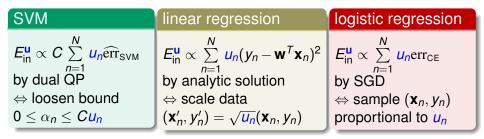
Hsuan-Tien Lin (NTU CSIE)

Diversify by Re-weighting

Weighted Base Algorithm

minimize (regularized)

$$\boldsymbol{E}_{in}^{\mathbf{u}}(h) = \frac{1}{N} \sum_{n=1}^{N} \boldsymbol{u}_n \cdot \operatorname{err}(\boldsymbol{y}_n, h(\mathbf{x}_n))$$



example-weighted learning: extension of class-weighted learning in Lecture 8

Hsuan-Tien Lin (NTU CSIE)

Diversify by Re-weighting

Re-weighting for More Diverse Hypothesis 'improving' bagging for binary classification: how to re-weight for more diverse hypotheses?

 $\begin{array}{lcl} \boldsymbol{g}_t & \leftarrow & \operatorname*{argmin}_{h \in \mathcal{H}} \left(\sum_{n=1}^{N} \boldsymbol{u}_n^{(t)} \left[\left[\boldsymbol{y}_n \neq h(\boldsymbol{x}_n) \right] \right] \right) \\ \\ \boldsymbol{g}_{t+1} & \leftarrow & \operatorname*{argmin}_{h \in \mathcal{H}} \left(\sum_{n=1}^{N} \boldsymbol{u}_n^{(t+1)} \left[\left[\boldsymbol{y}_n \neq h(\boldsymbol{x}_n) \right] \right] \right) \end{array}$

if g_t '**not good**' for $\mathbf{u}^{(t+1)} \Longrightarrow g_t$ -like hypotheses not returned as $g_{t+1} \Longrightarrow g_{t+1}$ diverse from g_t

idea: construct $\mathbf{u}^{(t+1)}$ to make g_t random-like $\frac{\sum_{n=1}^{N} u_n^{(t+1)} [\![\mathbf{y}_n \neq g_t(\mathbf{x}_n)]\!]}{\sum_{n=1}^{N} u_n^{(t+1)}} = \frac{1}{2}$

Hsuan-Tien Lin (NTU CSIE)

Diversify by Re-weighting

'Optimal' Re-weighting

want:
$$\frac{\sum_{n=1}^{N} u_n^{(t+1)} [\![y_n \neq g_t(\mathbf{x}_n)]\!]}{\sum_{n=1}^{N} u_n^{(t+1)}} = \frac{1}{2}$$

• re-write:
$$\frac{\Box_{t+1}}{\Box_{t+1}+\bigcirc_{t+1}} = \frac{1}{2}$$
, with

$$\Box_{t+1} = \sum_{n=1}^{N} u_n^{(t+1)} \llbracket y_n \neq g_t(\mathbf{x}_n) \rrbracket, \bigcirc_{t+1} = \sum_{n=1}^{N} u_n^{(t+1)} \llbracket y_n = g_t(\mathbf{x}_n) \rrbracket$$
• need: (total $u_n^{(t+1)}$ of incorrect) = (total $u_n^{(t+1)}$ of incorrect)
• how? with $\epsilon_t = \frac{\Box_t}{\Box_t+\bigcirc_t}$

$$\boxed{\Box_{t+1} \leftarrow \Box_t \cdot \bigcirc_t} \qquad \bigcirc_{t+1} \leftarrow \bigcirc_t \cdot \Box_t}$$

$$\boxed{\operatorname{incorrect:} u_n^{(t+1)} \leftarrow u_n^{(t)} \cdot (1 - \epsilon_t)} \quad \operatorname{correct:} u_n^{(t+1)} \leftarrow u_n^{(t)} \cdot \epsilon_t}$$

'optimal' re-weighting for diverse hypotheses: scale incorrect $\propto (1 - \epsilon_t)$; scale correct $\propto \epsilon_t$

Hsuan-Tien Lin (NTU CSIE)

Diversify by Re-weighting

Fun Time

Scaling Factor

'optimal' re-weighting:

scale incorrect $\propto (1 - \epsilon_t)$; scale correct $\propto \epsilon_t$

define scaling factor $\Diamond_t = \sqrt{\frac{1-\epsilon_t}{\epsilon_t}}$

incorrect \leftarrow incorrect $\cdot \Diamond_t$; correct \leftarrow correct/ \Diamond_t ;

- equivalent to optimal re-weighting
- $\Diamond_t \geq 1$ iff $\epsilon_t \leq \frac{1}{2}$

---physical meaning: scale up incorrect; scale down correct

-like what Teacher does

scaling-up incorrect examples leads to **diverse hypotheses**

Hsuan-Tien Lin (NTU CSIE)

Adaptive Boosting Algorithm

A Preliminary Algorithm

u⁽¹⁾ =?

for t = 1, 2, ..., T

 obtain *g_t* by *A*(*D*, **u**^(t)), where *A* tries to minimize **u**^(t)-weighted 0/1 error

2 update $\mathbf{u}^{(t)}$ to $\mathbf{u}^{(t+1)}$ by $\Diamond_t = \sqrt{\frac{1-\epsilon_t}{\epsilon_t}}$, where ϵ_t = weighted error rate of g_t return $G(\mathbf{x}) = ?$

• want g_1 'best' for E_{in} : $u_n^{(1)} = \frac{1}{M}$

- G(**x**):
 - uniform? but g₂ very bad for E_{in} (why? :-))
 - linear, non-linear? as you wish

next: a special algorithm to aggregate on the fly with theoretical guarantee

Hsuan-Tien Lin (NTU CSIE)

 $u^{(1)} = \frac{1}{N}$ for t = 1, 2, ..., T

- **1** obtain g_t by $\mathcal{A}(\mathcal{D}, \mathbf{u}^{(t)})$, where ...
- 2 update $\mathbf{u}^{(t)}$ to $\mathbf{u}^{(t+1)}$ by $\diamondsuit_t = \sqrt{\frac{1-\epsilon_t}{\epsilon_t}}$, where ...

 \bigcirc compute α_t

return
$$G(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t g_t(\mathbf{x})\right)$$

- wish: large α_t for 'good' $g_t \iff \alpha_t = \text{monotonic}(\Diamond_t)$
- will take $\alpha_t = \ln(\Diamond_t)$
 - $\epsilon_t = \frac{1}{2} \Longrightarrow \Diamond_t = 1 \Longrightarrow \alpha_t = 0$ (bad g_t zero weight)
 - $\epsilon_t = 0 \Longrightarrow \Diamond_t = \infty \Longrightarrow \alpha_t = \infty$ (super g_t superior weight)

Adaptive Boosting (AdaBoost): with such α_t , provable **boosting property**

Hsuan-Tien Lin (NTU CSIE)

Theoretical Guarantee of AdaBoost

From VC bound

$$E_{\rm out}(G) \leq \frac{E_{\rm in}(G)}{N} + O\left(\sqrt{\frac{d_{\rm VC}({\rm lin}(\mathcal{H}))}{N}\log N}\right)$$

- first term can be small (to be proved in homework): $E_{in}(G) = 0$ after $T = O(\log N)$ iterations if $\epsilon_t \le \epsilon < \frac{1}{2}$ always
- second term can be small: $d_{VC}(lin(\mathcal{H})) = O(d_{VC}(\mathcal{H}) \cdot T \log T)$ grows "slowly" with T

boosting view of AdaBoost:

if \mathcal{A} is weak but always slightly better than random ($\epsilon_t \leq \epsilon < \frac{1}{2}$) (AdaBoost+ \mathcal{A}) can be strong ($E_{in} = 0$ and E_{out} small).

Adaptive Boosting Algorithm

Fun Time

Hsuan-Tien Lin (NTU CSIE)

Machine Learning Techniques

18/23

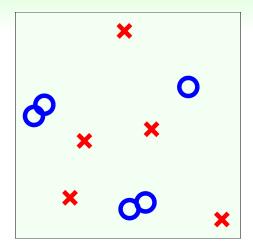
Decision Stump

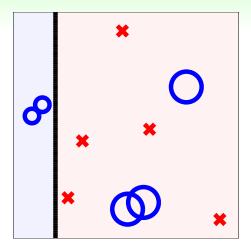
want: a 'weak' base learning algorithm \mathcal{A} that minimizes $E_{in}^{\mathbf{u}}(h) = \frac{1}{N} \sum_{n=1}^{N} u_n \cdot [[y_n \neq h(\mathbf{x}_n)]]$ a little bit

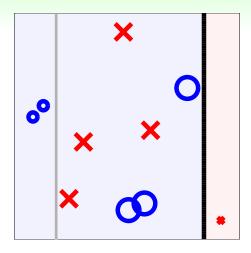
a popular choice: decision stump

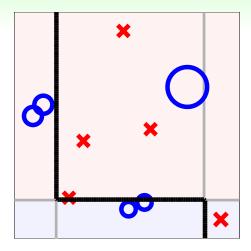
- positive and negative rays on some feature: three parameters (feature, threshold, direction)
- physical meaning: vertical/horizontal lines in 2D, or hyperplanes ⊥ natural axes
- efficient to optimize: O(d · N log N) time

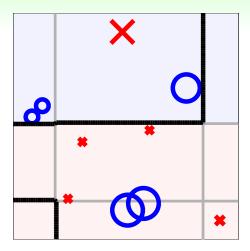
decision stump model: allows efficient minimization of E_{in}^{u} but perhaps too weak to use by itself

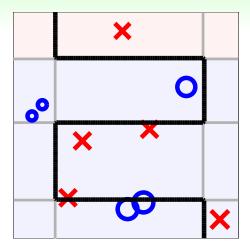






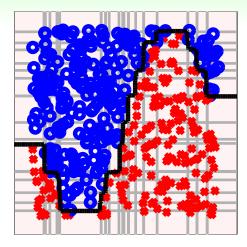






Adaptive Boosting in Action

A Complicated Data Set



Hsuan-Tien Lin (NTU CSIE)

Adaptive Boosting in Action

Fun Time

Summary

Lecture 8: Adaptive Boosting

- Motivation of Boosting
- Diversify by Re-weighting
- Adaptive Boosting Algorithm
- Adaptive Boosting in Action