Machine Learning Techniques (機器學習技巧)

Lecture 7: Blending and Bagging

Hsuan-Tien Lin (林軒田) htlin@csie.ntu.edu.tw

Department of Computer Science & Information Engineering

National Taiwan University (國立台灣大學資訊工程系)

Agenda

Lecture 7: Blending and Bagging

- Motivation of Aggregation
- Uniform Blending
- Linear and Any Blending
- Bagging

Motivation of Aggregation

An Aggregation Story

Your *T* friends g_1, \dots, g_T predicts whether stock will go up as $g_t(\mathbf{x})$.

You can . . .

- select the most trust-worthy friend from their usual performance —validation!
- mix the predictions from all your friends uniformly —let them vote!
- mix the predictions from all your friends non-uniformly —let them vote, but give some more ballots
- combine the predictions conditionally
 —if [condition t true] give some ballots to friend t

aggregation models: **mix** or **combine** hypotheses (for better performance)

Hsuan-Tien Lin (NTU CSIE)

. . .

Motivation of Aggregation

Aggregation with Math Notations

Your *T* friends g_1, \dots, g_T predicts whether stock will go up as $g_t(\mathbf{x})$.

- select the most trust-worthy friend from their usual performance $G(\mathbf{x}) = g_{t_*}(\mathbf{x})$ with $t_* = \operatorname{argmin}_{t \in \{1, 2, \dots, T\}} E_{val}(g_t)$
- mix the predictions from all your friends uniformly $Q(x) = x i m \left(\sum_{i=1}^{T} d_{i} x_{i} (x_{i}) \right)$

$$G(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \mathbf{1} \cdot g_t(\mathbf{x})\right)$$

- **mix** the predictions from all your friends **non-uniformly** $G(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t \cdot g_t(\mathbf{x})\right) \text{ with } \alpha_t \ge 0$
 - include select: α_t = [[E_{val}(g_t) smallest]]
 - include uniformly: $\alpha_t = 1$

combine the predictions conditionally

 $G(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} q_t(\mathbf{x}) \cdot g_t(\mathbf{x})\right) \text{ with } q_t(\mathbf{x}) \ge 0$

• include **non-uniformly**: $q_t(\mathbf{x}) = \alpha_t$

aggregation models: a rich family

Hsuan-Tien Lin (NTU CSIE)

Motivation of Aggregation

Recall: Selection by Validation

$$G(\mathbf{x}) = g_{t_*}(\mathbf{x})$$
 with $t_* = \operatorname*{argmin}_{t \in \{1, 2, \cdots, T\}} \frac{E_{\mathsf{val}}(g_t)}{E_{\mathsf{val}}(g_t)}$

- simple and popular
- can also use E_{in} instead of E_{val} (with complexity price on d_{VC})
- need one strong g_t to guarantee small E_{val} (and small E_{out})

selection: rely on one strong hypothesis aggregation: can we do better with many (possibly weaker) hypotheses?

Motivation of Aggregation

Why Might Aggregation Work?

- mix different weak hypotheses uniformly —G(x) 'strong'

- mix different random-PLA hypotheses uniformly —G(x) 'moderate'
- aggregation → regularization (?)

proper aggregation \Longrightarrow better performance

Hsuan-Tien Lin (NTU CSIE)

Motivation of Aggregation

Fun Time

Uniform Blending (Voting) for Classification uniform blending: known g_t , each with 1 ballot

$$G(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \mathbf{1} \cdot g_t(\mathbf{x})\right)$$

- same g_t (autocracy): as good as one single g_t
- very different g_t (diversity + democracy): majority can correct minority
- similar results with uniform voting for multiclass

$$G(\mathbf{x}) = \operatorname*{argmax}_{1 \le k \le K} \sum_{t=1}^{T} \llbracket g_t(\mathbf{x}) = k \rrbracket$$

how about regression?

Hsuan-Tien Lin (NTU CSIE)

Uniform Blending

Uniform Blending for Regression

 $G(\mathbf{x}) = \frac{1}{T} \sum_{t=1}^{T} g_t(\mathbf{x})$

- same g_t (autocracy): as good as one single g_t
- very different g_t (diversity + democracy):
 - some $g_t(\mathbf{x}) > f(\mathbf{x})$, some $g_t(\mathbf{x}) < f(\mathbf{x})$
 - \implies average **could be** more accurate than individual

diverse hypotheses: even simple uniform blending can be better than one

Theoretical Analysis of Uniform Blending

$$G(\mathbf{x}) = \frac{1}{T} \sum_{t=1}^{T} g_t(\mathbf{x})$$

$$avg((g_t(\mathbf{x}) - f(\mathbf{x}))^2) = avg(g_t^2 - 2g_t f + f^2)$$

= $avg(g_t^2) - 2Gf + f^2$
= $avg(g_t^2) - G^2 + (G - f)^2$
= $avg(g_t^2) - 2G^2 + G^2 + (G - f)^2$
= $avg(g_t^2 - 2g_t G + G^2) + (G - f)^2$
= $avg((g_t - G)^2) + (G - f)^2$

$$\operatorname{avg}\left(E_{\operatorname{out}}(g_t)\right) = \operatorname{avg}\left(\mathcal{E}(g_t - G)^2\right) + E_{\operatorname{out}}(G)$$

Uniform Blending

Some Special g_t

consider a virtual iterative process that for t = 1, 2, ..., T

- **1** request size-*N* data \mathcal{D}_t from P^N (i.i.d.)
- **2** obtain g_t by $\mathcal{A}(\mathcal{D}_t)$

$$\bar{g} = \lim_{T \to \infty} G = \lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} g_t = \mathcal{E}_{\mathcal{D}} \mathcal{A}(\mathcal{D})$$

$$\operatorname{avg}\left(\mathcal{E}_{\operatorname{out}}(g_t)\right) = \operatorname{avg}\left(\mathcal{E}(g_t - \bar{g})^2\right) + \mathcal{E}_{\operatorname{out}}(\bar{g})$$

expected performance of A = expected deviation to consensus +performance of consensus

- performance of consensus: called bias
- expected deviation to consensus: called variance

uniform blending: reduces variance for stabler performance

Hsuan-Tien Lin (NTU CSIE)

Fun Time

Linear and Any Blending

Linear Blending

linear blending: known g_t , each to be given α_t ballot

$$G(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t \cdot g_t(\mathbf{x})\right) \text{ with } \alpha_t \ge 0$$

computing 'good'
$$\alpha_t$$
 : $\min_{\alpha_t \ge 0} E_{in}(\alpha)$

 $\frac{\text{linear blending for regression}}{\min_{\alpha_t \ge 0} \frac{1}{N} \sum_{n=1}^{N} \left(y_n - \sum_{t=1}^{T} \alpha_t g_t(\mathbf{x}_n) \right)^2} \frac{\text{LinReg + transformation}}{\min_{w_i} \frac{1}{N} \sum_{n=1}^{N} \left(y_n - \sum_{i=1}^{\tilde{d}} w_i \phi_i(\mathbf{x}_n) \right)^2}$

linear blending = LinModel + hypotheses as transform + constraints

Hsuan-Tien Lin (NTU CSIE)

Constraint on α_t

linear blending = LinModel + hypotheses as transform + constraints:

$$\min_{t \ge 0} \qquad \frac{1}{N} \sum_{n=1}^{N} \operatorname{err} \left(y_n, \sum_{t=1}^{T} \alpha_t g_t(\mathbf{x}_n) \right)$$

linear blending for binary classification

$$\text{if } \alpha_t < 0 \implies \alpha_t g_t(\mathbf{x}) = |\alpha_t| \left(-g_t(\mathbf{x}) \right)$$

- negative α_t for $g_t \equiv$ positive $|\alpha_t|$ for $-g_t$
- if you have a stock up/down classifier with 99% error, tell me!
 :-)

in practice, often linear blending = LinModel + hypotheses as transform + constraints

Hsuan-Tien Lin (NTU CSIE)

Linear Blending versus Selection

in practice, often

$$\textbf{g}_1 \in \mathcal{H}_1, \textbf{g}_2 \in \mathcal{H}_2, \dots, \textbf{g}_T \in \mathcal{H}_T$$

by minimum E_{in}

- recall: selection by minimum E_{in} —best of best, paying $d_{VC} \left(\bigcup_{t=1}^{T} \mathcal{H}_{t} \right)$
- recall: linear blending includes selection as special case
 —by setting α_t = [[E_{val}(g_t) smallest]]
- complexity price of linear blending with E_{in} (aggregation of best): $\gg d_{VC} \left(\bigcup_{t=1}^{T} \mathcal{H}_t \right)$

like selection, blending practically done with $(E_{val} \text{ instead of } E_{in}) + (g_t \text{ from } E_{train})$

Hsuan-Tien Lin (NTU CSIE)

Any Blending

Linear Blending

Given $g_1, g_2, ..., g_T$

1 transform (\mathbf{x}_n, y_n) in \mathcal{D}_{val} to $(\mathbf{z}_n = \mathbf{\Phi}(\mathbf{x}_n), y_n)$, where $\mathbf{\Phi}(\mathbf{x}) = (g_1(\mathbf{x}), \dots, g_T(\mathbf{x}))$

2 compute
$$\alpha = \text{Lin}(\{(\mathbf{z}_n, y_n)\})$$

return $G_{\text{LINB}}(\mathbf{x}) = \text{LinH}(\boldsymbol{\alpha}^T \boldsymbol{\Phi}(\mathbf{x}))$

Any Blending (Stacking)

Given $g_1, g_2, ..., g_T$

1 transform (\mathbf{x}_n, y_n) in \mathcal{D}_{val} to $(\mathbf{z}_n = \mathbf{\Phi}(\mathbf{x}_n), y_n)$, where $\mathbf{\Phi}(\mathbf{x}) = (g_1(\mathbf{x}), \dots, g_T(\mathbf{x}))$ 2 compute $\tilde{g} = \operatorname{Any}(\{(\mathbf{z}_n, y_n)\})$

return $G_{\text{ANYB}}(\mathbf{x}) = \tilde{g}(\mathbf{\Phi}(\mathbf{x}))$

if AnyModel = quadratic polynomial:

$$G_{\text{ANYB}}(\mathbf{x}) = \sum_{t=1}^{T} \underbrace{\left(\alpha_t + \sum_{\tau=1}^{T} \alpha_{\tau,t} g_{\tau}(\mathbf{x})\right)}_{q(\mathbf{x})} \cdot g_t(\mathbf{x}) - \text{conditional aggregation}$$

danger: overfitting with any blending!

Hsuan-Tien Lin (NTU CSIE)

KDDCup 2012 Track 1: World Champion Solution by NTU

• validation set blending: a special any blending model

 E_{test} (squared): 519.45 \implies 456.24

-helped secure the lead in last two weeks

test set blending: linear blending using *E*_{test}

 E_{test} (squared): 456.24 \Longrightarrow 442.06

-helped turn the tables in last hour

blending 'useful' in practice, despite the computational burden

Hsuan-Tien Lin (NTU CSIE)

Linear and Any Blending

Fun Time

Hsuan-Tien Lin (NTU CSIE)

Blending and Bagging	Bagging		
	What We Have Done		
	blending: aggregate after getting g_t ;		
	icarning. aggregate as well as getting gr		
	aggregation type	blending	learning
	uniform	voting/averaging	?
	non-uniform	linear	?
	conditional	stacking	?

learning g_t for uniform aggregation: diversity important

- diversity by different models: $g_1 \in \mathcal{H}_1, g_2 \in \mathcal{H}_2, \dots, g_T \in \mathcal{H}_T$
- diversity by different parameters: GD with $\eta = 0.001, 0.01, ..., 10$
- diversity by algorithmic randomness: random PLA with different random seeds
- diversity by data randomness:

within-cross-validation hypotheses g_v^-

next: diversity by data randomness without g^-

Hsuan-Tien Lin (NTU CSIE)

Revisit of Bias-Variance

expected performance of A = expected deviation to consensus +performance of consensus

consensus $\bar{g} = \text{expected } g_t \text{ from } \mathcal{D}_t \sim \mathcal{P}^N$

- consensus more stable than direct A(D), but comes from many more D_t than the D on hand
- want: approximate \bar{g} by
 - finite (large) T
 - approximate $g_t = \mathcal{A}(\mathcal{D}_t)$ from $\mathcal{D}_t \sim P^N$ using only \mathcal{D}

bootstrapping: a statistical tool that re-samples from \mathcal{D} to 'simulate' \mathcal{D}_t

Bootstrap Aggregation

bootstrapping

bootstrap sample \tilde{D}_t : re-sample N examples from \mathcal{D} with replacement

virtual aggregation

consider a **virtual** iterative process that for t = 1, 2, ..., T

1 request size-*N* data D_t from P^N (i.i.d.)

2 obtain
$$g_t$$
 by $\mathcal{A}(\mathcal{D}_t)$

 $G = Uniform(g_t)$

bootstrap aggregation

consider a **physical** iterative process that for t = 1, 2, ..., T

1 request size-*N* data $\tilde{\mathcal{D}}_t$ from bootstrapping

2 obtain
$$g_t$$
 by $\mathcal{A}(\tilde{\mathcal{D}}_t)$

 $G = \text{Uniform}(g_t)$

bootstrap aggregation (BAGging): a simple meta algorithm on top of base algorithm \mathcal{A}

Hsuan-Tien Lin (NTU CSIE)

Bagging

Bagging Pocket in Action

 $T_{\text{pocket}} = 1000; \ T_{\text{bag}} = 25$

- very diverse *g*_t from bagging
- proper non-linear boundary after aggregating binary classifiers

bagging works reasonably well if base algorithm sensitive to data randomness

Hsuan-Tien Lin (NTU CSIE)

Bagging

Fun Time

Hsuan-Tien Lin (NTU CSIE)

Machine Learning Techniques

22/23

Summary

Lecture 7: Blending and Bagging

Motivation of Aggregation

strong and/or moderate

- Uniform Blending one hypothesis, one vote, one value
- Linear and Any Blending learning with hypotheses as transform
- Bagging

bootstrapping for diverse g_t