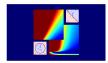
Machine Learning Foundations

(機器學習基石)



Lecture 16: Three Learning Principles

Hsuan-Tien Lin (林軒田)

htlin@csie.ntu.edu.tw

Department of Computer Science & Information Engineering

National Taiwan University (國立台灣大學資訊工程系)

Roadmap

- 1 When Can Machines Learn?
- 2 Why Can Machines Learn?
- 3 How Can Machines Learn?
- 4 How Can Machines Learn Better?

Lecture 15: Validation

(crossly) reserve validation data to simulate testing procedure for model selection

Lecture 16: Three Learning Principles

- Occam's Razor
- Sampling Bias
- Data Snooping
- Power of Three

Occam's Razor

An explanation of the data should be made as simple as possible, but no simpler.—Albert Einstein? (1879-1955)

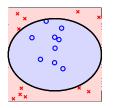
entia non sunt multiplicanda praeter necessitatem (entities must not be multiplied beyond necessity)
—William of Occam (1287-1347)

'Occam's razor' for trimming down unnecessary explanation

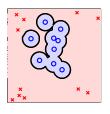
figure by Fred the Oyster (Own work) [CC-BY-SA-3.0], via Wikimedia Commons

Occam's Razor for Learning

The simplest model that fits the data is also the most plausible.



which one do you prefer? :-)



two questions:

- What does it mean for a model to be simple?
- 2 How do we know that simpler is better?

Simple Model

simple hypothesis h

- small $\Omega(h)$ = 'looks' simple
- specified by few parameters

simple model ${\cal H}$

- small $\Omega(\mathcal{H})$ = not many
- contains small number of hypotheses

connection

h specified by ℓ bits $\Leftarrow |\mathcal{H}|$ of size 2^{ℓ}

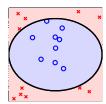
small $\Omega(h) \Leftarrow \text{small } \Omega(\mathcal{H})$

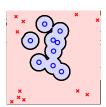
simple: small hypothesis/model complexity

Simple is Better

in addition to $\color{red} \text{math proof}$ that you have seen, philosophically: simple $\mathcal H$

- \Longrightarrow smaller $m_{\mathcal{H}}(N)$
- \Longrightarrow less 'likely' to fit data perfectly $\frac{m_{\mathcal{H}}(N)}{2^N}$
- ⇒ more significant when fit happens





direct action: linear first; always ask whether data over-modeled

Fun Time

Presidential Story

- 1948 US President election: Truman versus Dewey
- a newspaper phone-poll of how people voted,
 and set the title 'Dewey Defeats Truman' based on polling

who is this? :-)

The Big Smile Came from ...

Truman, and yes he won

suspect of the mistake:

- editorial bug?—no
- bad luck of polling (δ)?—no

hint: phones were expensive :-)

Sampling Bias

If the data is sampled in a biased way, learning will produce a similarly biased outcome.

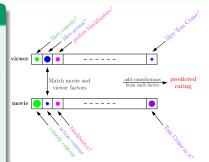
- techical explanation: data from P₁(x, y) but test under P₂ ≠ P₁: VC fails
- philosophical explanation: study Math hard but test English: no strong test guarantee

'minor' VC assumption: data and testing both iid from *P*

Sampling Bias in Learning

A True Personal Story

- Netflix competition for movie recommender system:
 10% improvement = 1M US dollars
- formed \mathcal{D}_{val} , in my first shot, $E_{\text{val}}(g)$ showed 13% improvement
- why am I still teaching here? :-)



validation: random examples within \mathcal{D} ;

test: 'last' user records 'after' \mathcal{D}

Dealing with Sampling Bias

If the data is sampled in a biased way, learning will produce a similarly biased outcome.

- practical rule of thumb:
 match test scenario as much as possible
- ullet e.g. if test: 'last' user records 'after' ${\cal D}$
 - training: emphasize later examples (KDDCup 2011)
 - · validation: use 'late' user records

last puzzle:

danger when learning 'credit card approval' with existing bank records?

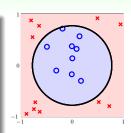
Fun Time

Visual Data Snooping

Visualize $\mathcal{X} = \mathbb{R}^2$

- full Φ_2 : $\mathbf{z} = (1, x_1, x_2, x_1^2, x_1 x_2, x_2^2), d_{VC} = 6$
- or $\mathbf{z} = (1, x_1^2, x_2^2), d_{VC} = 3$, after visualizing?
- or better $\mathbf{z} = (1, x_1^2 + x_2^2)$, $d_{VC} = 2$?
- or even better $\mathbf{z} = (\text{sign}(0.6 x_1^2 x_2^2))$?

—careful about your brain's 'model complexity'

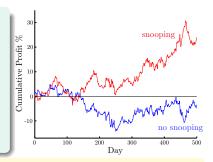


for VC-safety, Φ shall be decided without 'snooping' data

Data Snooping by Mere Shifting-Scaling

If a data set has affected any step in the learning process, its ability to assess the outcome has been compromised.

- 8 years of currency trading data
- first 6 years for training, last two 2 years for testing
- x = previous 20 days,
 y = 21th day
- snooping versus no snooping: superior profit possible



- snooping: shift-scale all values by training + testing
- no snooping: shift-scale all values by training only

Data Snooping by Data Reusing

Research Scenario

benchmark data \mathcal{D}

- paper 1: propose \mathcal{H}_1 that works well on \mathcal{D}
- paper 2: find room for improvement, propose \$\mathcal{H}_2\$
 —and publish only if better than \$\mathcal{H}_1\$ on \$\mathcal{D}\$
- paper 3: find room for improvement, propose \$\mathcal{H}_3\$
 —and publish only if better than \$\mathcal{H}_2\$ on \$\mathcal{D}\$
- . . .
- if all papers from the same author in **one big paper**: bad generalization due to $d_{VC}(\cup_m \mathcal{H}_m)$
- step-wise: later author snooped data by reading earlier papers, bad generalization worsen by publish only if better

if you torture the data long enough, it will confess :-)

Dealing with Data Snooping

- truth—very hard to avoid, unless being extremely honest
- extremely honest: lock your test data in safe
- less honest: reserve validation and use cautiously
- be blind: avoid making modeling decision by data
- be suspicious: interpret research results (including your own) by proper feeling of contamination

one secret to winning KDDCups:

careful balance between data-driven modeling (snooping) and validation (no-snooping)

Fun Time

Three Related Fields

Power of Three

Data Mining

- use (huge) data to find property that is interesting
- difficult to distinguish ML and DM in reality

Artificial Intelligence

- compute something that shows intelligent behavior
- ML is one possible route to realize Al

Statistics

- use data to make inference about an unknown process
- statistics contains many useful tools for ML

Three Theoretical Bounds

Power of Three

Hoeffding

P[BAD] < $2 \exp(-2\epsilon^2 N)$

- one hypothesis
- useful for verifying/testing

Multi-Bin Hoeffding

P[BAD] < $2M \exp(-2\epsilon^2 N)$

- M hypotheses
- useful for validation

P[BAD]

 $\leq 4m_{\mathcal{H}}(2N)\exp(\ldots)$

all H

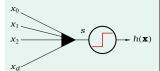
VC

 useful for training

Three Linear Models

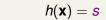
Power of Three

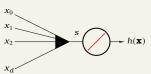
PLA/pocket



plausible err = 0/1 (small flipping noise) minimize specially

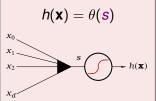
linear regression





friendly err = squared (easy to minimize) minimize analytically

logistic regression



plausible err = CE (maximum likelihood) minimize iteratively

Three Key Tools

Power of Three

Feature Transform

$$E_{\text{in}}(\mathbf{w}) \rightarrow E_{\text{in}}(\tilde{\mathbf{w}})$$

 $d_{\text{VC}}(\mathcal{H}) \rightarrow d_{\text{VC}}(\mathcal{H}_{\Phi})$

- by using more complicated Φ
- lower E_{in}
- higher d_{VC}

Regularization

$$E_{\text{in}}(\mathbf{w}) \rightarrow E_{\text{in}}(\mathbf{w}_{\text{REG}})$$

 $d_{\text{VC}}(\mathcal{H}) \rightarrow d_{\text{EFF}}(\mathcal{H}, \mathcal{A})$

- by augmenting regularizer Ω
- lower d_{EFF}
- higher Ein

Validation

$$E_{\mathsf{in}}(h) \rightarrow E_{\mathsf{val}}(h) \ \mathcal{H} \rightarrow \{g_1^-, \dots, g_M^-\}$$

- by reserving K examples as D_{val}
- fewer choices
- fewer examples

Three Learning Principles

Power of Three

class matches exam

Occam's Razer simple is good

Sampling Bias

Data Snooping honesty is best policy

Three Future Directions

Power of Three

More Transform

More Regularization Less Label

semi–supervised learning Gaussian pr	overfitting	stochastic gradient de	SVM	Qlearning
distribution-free		data	snooping lea	rning curves
collaborative filtering decision trees	nonlinear transforn	nation sampling I	oias neural network	mixture of experts s no free lunch
active learning		ining versus testing	noisy targets	Bayesian prior
	g linear models	bias-variance tra	deoff weak	learners
ordinal regression	cross validation	logistic regression	data contamination	
ensemble learning		types of learning	perceptrons hi	dden Markov models
exploration versus exploitati	on error measures	kernel methods		al models
	is learning feasible		order constraint	
clustering	regularizatio	weight decay	Occam's razor B	oltzmann machines

ready for the jungle!

Fun Time

Summary

- 1 When Can Machines Learn?
- 2 Why Can Machines Learn?
- 3 How Can Machines Learn?
- 4 How Can Machines Learn Better?

Lecture 15: Validation

Lecture 16: Three Learning Principles

Occam's Razor

simple, simple, simple!

- Sampling Bias match test scenario as much as possible
- Data Snooping any use of data is 'contamination'
- Power of Three relatives, bounds, models, tools, principles
- next: ready for jungle!