1 Probability and Statistics

(1) (combinatorics)
Let \(C(N, K) = 1 \) for \(K = 0 \) or \(K = N \), and \(C(N, K) = C(N - 1, K) + C(N - 1, K - 1) \) for \(N \geq 1 \). Prove that \(C(N, K) = \frac{N!}{K!(N-K)!} \) for \(N \geq 1 \) and \(0 \leq K \leq N \).

(2) (counting)
What is the probability of getting exactly 6 heads when flipping 10 fair coins?
What is the probability of getting a full house (XXXYY) when randomly drawing 5 cards out of a deck of 52 cards?

(3) (conditional probability)
If your friend flipped a fair coin three times, and tell you that one of the tosses resulted in head, what is the probability that all three tosses resulted in heads?

(4) (Bayes theorem)
A program selects a random integer \(X \) like this: a random bit is first generated uniformly. If the bit is 0, \(X \) is drawn uniformly from \(\{0,1,\ldots,7\} \); otherwise, \(X \) is drawn uniformly from \(\{0,-1,-2,-3\} \). If we get an \(X \) from the program with \(|X| = 1 \), what is the probability that \(X \) is negative?

(5) (union/intersection)
If \(P(A) = 0.3 \) and \(P(B) = 0.4 \),
what is the maximum possible value of \(P(A \cap B) \)?
what is the minimum possible value of \(P(A \cap B) \)?
what is the maximum possible value of \(P(A \cup B) \)?
what is the minimum possible value of \(P(A \cup B) \)?

(6) (mean/variance)
Let mean \(\bar{X} = \frac{1}{N} \sum_{n=1}^{N} X_n \) and variance \(\sigma_X^2 = \frac{1}{N-1} \sum_{n=1}^{N} (X_n - \bar{X})^2 \). Prove that
\[
\sigma_X^2 = \frac{N}{N-1} \left(\frac{1}{N} \sum_{n=1}^{N} X_n^2 - \bar{X}^2 \right).
\]

(7) (Gaussian distribution)
If \(X_1 \) and \(X_2 \) are independent random variables, where \(p(X_1) \) is Gaussian with mean 2 and variance 1, \(p(X_2) \) is Gaussian with mean \(-3\) and variance 4. Let \(Z = X_1 + X_2 \). Prove \(p(Z) \) is Gaussian, and determine its mean and variance.

2 Linear Algebra

(1) (rank)
What is the rank of \(\begin{pmatrix} 1 & 2 & 1 \\ 1 & 0 & 3 \\ 1 & 1 & 2 \end{pmatrix} \)?

(2) (inverse)
What is the inverse of \(\begin{pmatrix} 0 & 2 & 4 \\ 2 & 4 & 2 \\ 3 & 3 & 1 \end{pmatrix} \)?
(3) (eigenvalues/eigenvectors)

What are the eigenvalues and eigenvectors of \[
\begin{pmatrix}
3 & 1 & 1 \\
2 & 4 & 2 \\
-1 & -1 & 1
\end{pmatrix}
\]?

(4) (singular value decomposition)

(a) For a real matrix \(M\), let \(M = U\Sigma V^T\) be its singular value decomposition. Define \(M^\dagger = V\Sigma^\dagger U^T\), where \(\Sigma^\dagger[i][j] = \frac{1}{\Sigma[i][j]}\) when \(\Sigma[i][j]\) is nonzero, and 0 otherwise. Prove that \(MM^\dagger M = M\).

(b) If \(M\) is invertible, prove that \(M^\dagger = M^{-1}\).

(5) (PD/PSD)

A symmetric real matrix \(A\) is positive definite (PD) iff \(x^TAx > 0\) for all \(x \neq 0\), and positive semi-definite (PSD) if “>” is changed to “≥”. Prove:

(a) For any real matrix \(Z\), \(ZZ^T\) is PSD.

(b) A symmetric \(A\) is PD iff all eigenvalues of \(A\) are strictly positive.

(6) (inner product)

Consider \(x \in \mathbb{R}^d\) and some \(u \in \mathbb{R}^d\) with \(\|u\| = 1\).

What is the maximum value of \(u^Tx\)? What \(u\) results in the maximum value?

What is the minimum value of \(u^Tx\)? What \(u\) results in the minimum value?

What is the minimum value of \(|u^Tx|\)? What \(u\) results in the minimum value?

(7) (distance)

Consider two parallel hyperplanes in \(\mathbb{R}^d\):

\[H_1 : w^Tx = +3,\]
\[H_2 : w^Tx = -2,\]

where \(w\) is the norm vector. What is the distance between \(H_1\) and \(H_2\)?

3 Calculus

(1) (differential and partial differential)

Let \(f(x) = \ln(1 + e^{-2x})\). What is \(\frac{df(x)}{dx}\)? Let \(g(x, y) = e^x + e^{2y} + e^{3xy^2}\). What is \(\frac{\partial g(x, y)}{\partial y}\)?

(2) (chain rule)

Let \(f(x, y) = xy, x(u, v) = \cos(u + v), y(u, v) = \sin(u - v)\). What is \(\frac{\partial f}{\partial v}\)?

(3) (integral)

What is \(\int_5^{10} \frac{2}{x - 3} \, dx\)?

(4) (gradient and Hessian)

Let \(E(u, v) = (ue^v - 2ve^{-u})^2\). Calculate the gradient \(\nabla E\) and the Hessian \(\nabla^2 E\) at \(u = 1\) and \(v = 1\).

(5) (Taylor’s expansion)

Let \(E(u, v) = (ue^v - 2ve^{-u})^2\). Write down the second-order Taylor’s expansion of \(E\) around \(u = 1\) and \(v = 1\).

(6) (optimization)

For some given \(A > 0, B > 0\), solve \(\min_{\alpha} Ae^\alpha + Be^{-2\alpha}\).
(7) (vector calculus)
Let \mathbf{w} be a vector in \mathbb{R}^d and $E(\mathbf{w}) = \frac{1}{2}\mathbf{w}^T \mathbf{A} \mathbf{w} + \mathbf{b}^T \mathbf{w}$ for some symmetric matrix \mathbf{A} and vector \mathbf{b}. Prove that the gradient $\nabla E(\mathbf{w}) = \mathbf{A} \mathbf{w} + \mathbf{b}$ and the Hessian $\nabla^2 E(\mathbf{w}) = \mathbf{A}$.

(8) (quadratic programming)
Following the previous question, if \mathbf{A} is not only symmetric but also positive definite (PD), prove that the solution of $\arg\min_{\mathbf{w}} E(\mathbf{w})$ is $-\mathbf{A}^{-1} \mathbf{b}$.

(9) (optimization with linear constraint)
Consider
$$
\min_{w_1, w_2, w_3} \frac{1}{2}(w_1^2 + 2w_2^2 + 3w_3^2) \text{ subject to } w_1 + w_2 + w_3 = 11.
$$
Refresh your memory on “Lagrange multipliers” and show that the optimal solution must happen on $w_1 = \lambda$, $2w_2 = \lambda$, $3w_3 = \lambda$. Use the property to solve the problem.

(10) (optimization with linear constraints)
Let \mathbf{w} be a vector in \mathbb{R}^d and $E(\mathbf{w})$ be a convex differentiable function of \mathbf{w}. Prove that the optimal solution to
$$
\min_{\mathbf{w}} E(\mathbf{w}) \text{ subject to } \mathbf{A} \mathbf{w} + \mathbf{b} = 0.
$$
must happen at $\nabla E(\mathbf{w}) + \lambda^T \mathbf{A} = 0$ for some vector λ. (Hint: If not, let \mathbf{u} be the residual when projecting $\nabla E(\mathbf{w})$ to the span of the rows of \mathbf{A}. Show that for some very small η, $\mathbf{w} - \eta \cdot \mathbf{u}$ is a feasible solution that improves E.)