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Unless granted by the instructor in advance, you must turn in a printed/written copy of your solutions
(without the source code) for all problems. For problems marked with (*), please follow the guidelines on
the course website and upload your source code and predictions to designated places.

Any form of cheating, lying, or plagiarism will not be tolerated. Students can get zero scores and/or fail
the class and/or be kicked out of school and/or receive other punishments for those kinds of misconducts.

Discussions on course materials and homework solutions are encouraged. But you should write the final
solutions alone and understand them fully. Books, notes, and Internet resources can be consulted, but
not copied from.

Since everyone needs to write the final solutions alone, there is absolutely no need to lend your homework
solutions and/or source codes to your classmates at any time. In order to maximize the level of fairness
in this class, lending and borrowing homework solutions are both regarded as dishonest behaviors and will
be punished according to the honesty policy.

You should write your solutions in English with the common math notations introduced in class or in the
problems. We do not accept solutions written in any other languages.

7.1 Kernels and Transforms

(1) (15%) Let all the input vectors be real values (x ∈ X ∈ R) with |x| < 1. Consider a kernel
function K(x,x′) = 1

1−xTx′ . Prove that K is a valid kernel by deriving a transform function φ(x)
such that

K(x,x′) = φ(x)Tφ(x′).

(2) (15%) For two valid kernels K1(x,x′) = φ1(x)Tφ1(x′) and K2(x,x′) = φ2(x)Tφ2(x′), consider
a kernel function K(x,x′) = γ1K1(x,x′) + γ2K2(x,x′) with γ1 > 0 and γ2 > 0. Prove that K is a
valid kernel by deriving a transform function φ(x) such that

K(x,x′) = φ(x)Tφ(x′).

(The result shows that a conic combination of valid kernels is still a valid kernel.)

(3) (15%) For two valid kernels K1(x,x′) = φ1(x)Tφ1(x′) and K2(x,x′) = φ2(x)Tφ2(x′), consider
a kernel function K(x,x′) = K1(x,x′) · K2(x,x′). Prove that K is a valid kernel by deriving a
transform function φ(x) such that

K(x,x′) = φ(x)Tφ(x′).

(The result shows that a multiplication of valid kernels is still a valid kernel.)

(4) (15%) Prove that the function K(x,x′) = −2(xTx′)2 + xTx′ is NOT a valid kernel function.

(Hint: Check Mercer’s condition.)

7.2 Kernel from Decision Stumps

When talking about non-uniform voting in aggregation, we mentioned that α can be viewed as a weight
vector learned from any linear algorithm coupled with the following transform:

φ(x) =
(
h1(x), h2(x), · · · , hT (x)

)
.

When studying kernel methods, we mentioned that the kernel is simply a computational short-cut for the
inner product φ(x)Tφ(x′). In this problem, we mix the two topics together using the decision stumps
as our h(x).
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(1) (15%) Assume that the input vectors contain only integers between −B and B.

hs,i,θ(x) = sign
(
s · x[i]− θ

)
.

Two decision stumps h(1) and h(2) are defined as the same if h(1)(x) = h(2)(x) for every x ∈ X .
Two decision stumps are different if they are not the same. Argue that there are only finitely-many
different decision stumps for X and list all of them for the case of d = 2 and B = 3.

(2) (15%) Let H = { all different decision stumps for X }. Since H is finite, we can enumerate each
hypothesis h ∈ H by some index t. Define

φds(x) =

(
h1(x), h2(x), · · · , ht(x), · · · , h|H|(x)

)
.

Derive a simple equation that evaluates Kds(x,x
′) = φds(x)Tφds(x

′) efficiently.

The result can be easily extended to the case when X is an arbitrary box in Rd as well.

7.3 Power of Adaptive Boosting

The adaptive boosting (AdaBoost) algorithm, as shown in the class slides, is as follows:

• For input D = {(xn, yn)}Nn=1, set un = 1
N for all n.

• For t = 1, 2, · · · , T ,

– Learn a simple hypothesis ht such that ht solves

ht = argmin
h∈H

N∑
n=1

un · Jyn 6= h(xn)K .

with the help of some base learner Ab that learns from h ∈ H.

– Compute the weighted error εt =

∑N
n=1 un · Jyn 6= ht(xn)K∑N

n=1 un
and the confidence

αt =
1

2
ln

1− εt
εt

– Change the example weights: un = un · exp
(
−αtynht(xn)

)
.

• Output: combined function H(x) = sign

(
T∑
t=1

αtht(x)

)
In this problem, we will prove that AdaBoost can reach Ein(H) = 0 if T is large enough and every

hypothesis ht satisfies εt ≤ ε < 1
2 .

(1) (10%) Let U (t−1) =

N∑
n=1

un at the beginning of the t-th iteration. According to the AdaBoost

algorithm above, for t ≥ 1, prove that

U (t) =
1

N

N∑
n=1

exp

(
−yn

t∑
τ=1

ατhτ (xn)

)
.

(2) (10%) By the result in (1), prove that Ein(H) ≤ U (T ).

(3) (10%) According to the AdaBoost algorithm above, for t ≥ 1, prove that U (t) = U (t−1) ·
2
√
εt(1− εt).
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(4) (10%) Using 0 ≤ εt ≤ ε < 1
2 , for t ≥ 1, prove that

√
εt(1− εt) ≤

√
ε(1− ε).

(5) (10%) Using ε < 1
2 , prove that

√
ε(1− ε) ≤ 1

2 exp
(
−2( 1

2 − ε)
2
)
.

(6) (10%) Using the results above, prove that U (T ) ≤ exp
(
−2T ( 1

2 − ε)
2
)
.

(7) (10%) Using the results above, argue that after T = O(logN) iterations, Ein(H) = 0.

7.4 Experiments with Adaptive Boosting (*)

(1) (40%) Implement the AdaBoost algorithm with decision stumps (i.e., use Ads as Ab). Run the
algorithm on the following set for training:

http://www.csie.ntu.edu.tw/~htlin/course/ml11fall/data/hw7_train.dat

and the following set for testing:

http://www.csie.ntu.edu.tw/~htlin/course/ml11fall/data/hw7_test.dat

Use a total of T = 300 iterations. Let Ht(x) = sign

(
t∑

τ=1

ατhτ (x)

)
. Plot Ein(Ht), Eout(Ht)

and U (t) (see the definition above) as functions of t on the same figure. Briefly state your findings.

7.5 Constant Shifting of Kernels

(1) (Bonus 10%) Argue that for any kernel function K(x,x′), using K(x,x′) + c for any constant c
is equivalent to using K(x,x′) in the dual of (hard- or soft-margin) SVM. In other words, prove
that the resulting classifier is exactly the same. Use your argument to obtain a kernel of the form
Kds(x,x

′) + c (see Problem 7.2) that is even easier to evaluate.
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