
Machine Learning (NTU, Fall 2011) instructor: Hsuan-Tien Lin

Homework #6
TA email: ml2011ta@csie.ntu.edu.tw

RELEASE DATE: 12/7/2011

DUE DATE: EXTENDED TO 12/30/2011 4PM IN R536

Unless granted by the instructor in advance, you must turn in a printed/written copy of your solutions
(without the source code) for all problems. For problems marked with (*), please follow the guidelines on
the course website and upload your source code and predictions to designated places.

Any form of cheating, lying, or plagiarism will not be tolerated. Students can get zero scores and/or fail
the class and/or be kicked out of school and/or receive other punishments for those kinds of misconducts.

Discussions on course materials and homework solutions are encouraged. But you should write the final
solutions alone and understand them fully. Books, notes, and Internet resources can be consulted, but
not copied from.

Since everyone needs to write the final solutions alone, there is absolutely no need to lend your homework
solutions and/or source codes to your classmates at any time. In order to maximize the level of fairness
in this class, lending and borrowing homework solutions are both regarded as dishonest behaviors and will
be punished according to the honesty policy.

You should write your solutions in English with the common math notations introduced in class or in the
problems. We do not accept solutions written in any other languages.

6.1 Transforms: Explicit versus Implicit

Consider the following training set:

x1 = (1, 0), y1 = −1 x2 = (0, 1), y2 = −1 x3 = (0,−1), y3 = −1

x4 = (−1, 0), y4 = +1 x5 = (0, 2), y5 = +1 x6 = (0,−2), y6 = +1

x7 = (−2, 0), y7 = +1

(1) Use following nonlinear transformation of the input vector x to the transformed vector z =
(φ1(x), φ2(x)):

φ1(x) = (x[2])2 − 2x[1] + 3 φ2(x) = (x[1])2 − 2x[2]− 3

(a) (10%) Write down the equation of the optimal separating “hyperplane” in the Z space.
Then, plot the transformed training points in the Z space as well as the boundary between
the +1 and −1 regions, and mark the on-the-boundary vectors (the potential support vectors).

(b) (10%) Write down the equation of the corresponding nonlinear curve in the X space. Then,
plot the original training points on the X plane as well as the boundary between the +1
and −1 regions, and mark the on-the-boundary vectors (the potential support vectors).

(2) Consider the same training set, but instead of explicitly transforming the input space X , apply the
(hard-margin) SVM algorithm with the kernel function

K(x,x′) = (2 + xTx′)2,

which corresponds to a second-order polynomial transformation.

(a) (10%) Set up the optimization problem using (α1, · · · , α7) and numerically solve for them
(you can use any package you want). What is the optimal α?

(b) (10%) Write down the equation of the corresponding nonlinear curve in the X space. Then,
plot the original training points on the X plane as well as the boundary between the +1
and −1 regions, and mark the on-the-boundary vectors (the potential support vectors).

(3) (10%) Should the two nonlinear curves (and potential support vectors) found in (1) and (2) be
the same? Why or why not? Make a comparison and briefly describe your findings.
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6.2 A Leave-One-Out Bound of Support Vector Machine

Consider the soft-margin SVM

(D) min
α

EN (α) =
1

2

N∑
n=1

N∑
m=1

αnαmynymK(xn,xm)−
N∑
n=1

αn

subject to

N∑
n=1

ynαn = 0

0 ≤ αn ≤ C

and a soft-margin SVM without the N -th example

(D−N ) min
β

EN−1(β) =
1

2

N−1∑
n=1

N−1∑
m=1

βnβmynymK(xn,xm)−
N−1∑
n=1

βn

subject to

N−1∑
n=1

ynβn = 0

0 ≤ βn ≤ C

(1) (10%) Assume that α∗ is an optimal solution for (D) with α∗N = 0. Let β̂ =
(
α∗1, α

∗
2, . . . , α

∗
N−1

)
.

Argue that β̂ is a feasible vector for (D−N ). That is, check that β̂ satisfies all constraints of (D−N ).

(2) (10%) Assume that β∗ is an optimal solution for (D−N ). That is, EN−1(β) ≥ EN−1(β∗) for all

feasible vectors β. Prove that the β̂ above satisfies

EN−1(β̂) = EN−1(β∗).

In other words, β̂ is also optimal for (D−N ).

(3) (10%) Recall that #SV = (# of nonzero α∗n). With the results in (1) and (2), prove that the
leave-one-out cross-validation error of SVM is upper bounded by the percentage of support vectors.
You can use the fact that

α∗n = 0 =⇒ yn

(
(w∗)Tφ(xn) + b∗

)
≥ 1.

6.3 Dual Problem of L2-Loss Soft-Margin Support Vector Ma-
chines

In class, we taught the soft-margin support vector machine as follows.

(P1) min
w,b,ξ

1

2
wTw + C

N∑
n=1

ξn

s.t. yn

(
wTxn + b

)
≥ 1− ξn

ξn ≥ 0.

The support vector machine penalizes the margin violation linearly. Another popular formulation penal-
izes the margin violation quadratically. In this problem, we derive the dual of such a formulation. The
formulation is as follows.

(P ′2) min
w,b,ξ

1

2
wTw + C

N∑
n=1

ξ2n

s.t. yn

(
wTxn + b

)
≥ 1− ξn, for n = 1, 2, · · · , N ;

ξn ≥ 0, for n = 1, 2, · · · , N.
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(1) (5%) Argue that the constraints ξn ≥ 0 are not necessary for the new formulation. In other
words, the formulation (P2′) is equivalent to the following optimization problem.

(P2) min
w,b,ξ

1

2
wTw + C

N∑
n=1

ξ2n

s.t. yn

(
wTxn + b

)
≥ 1− ξn, for n = 1, 2, · · · , N.

(2) (10%) Let αn be the Lagrange multipliers for the n-th constraint in (P2). Following the derivation
of the dual SVM in class, write down (P2) as an equivalent optimization problem

min
(b,w,ξ)

max
αn≥0

L((b,w, ξ),α).

What is L((b,w, ξ),α)?

(3) (10%) Using (assuming) strong duality, the solution to (P2) would be the same as the Lagrange
dual problem

max
αn≥0

min
(b,w,ξ)

L((b,w, ξ),α).

Use the KKT conditions to simplify the Lagrange dual problem, and obtain a dual problem that
involves only αn.

(4) (5%) Explain what would happen when we use zn = φ(xn) instead of xn, and write down the
optimization problem that uses K(xn,xm) to replace φ(xn)Tφ(xm)—that is, the kernel trick.

6.4 Large-Margin Perceptron Classification (*)

(1) (15%) Implement the perceptron learning algorithm in Problem 1.5. Run the algorithm on the
following data set for training (until Ein reaches 0):

http://www.csie.ntu.edu.tw/~htlin/course/ml11fall/doc/hw6_4_train.dat

and the following set for testing

http://www.csie.ntu.edu.tw/~htlin/course/ml11fall/doc/hw6_4_test.dat

Let g(x) = sign
(
wTx + b

)
with (b,w) coming from PLA. Record the following two items:

• the margin of the hyperplane

• the out-of-sample error Eout of g

Repeat the experiment over 100 runs. Plot a histogram of the margin and another histogram of
the out-of-sample error. Briefly state your findings.

(2) (15%) Implement the large-margin perceptron (linear hard-margin SVM) formulation below:

min
w,b

1

2
wTw

subject to yn
(
wTxn + b

)
≥ 1 for n = 1, 2, . . . , N.

Run the algorithm on the following data set for training:

http://www.csie.ntu.edu.tw/~htlin/course/ml11fall/doc/hw6_4_train.dat

and the following set for testing

http://www.csie.ntu.edu.tw/~htlin/course/ml11fall/doc/hw6_4_test.dat

Let g(x) = sign
(
wTx + b

)
with (b,w) coming from SVM. Record the following two items:

• the margin of the hyperplane
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• the out-of-sample error Eout of g

Compare the numbers with the histograms that you get from PLA. Briefly state your findings.

(Note: You can use any general-purpose packages for quadratic programming to solve this problem,
but you cannot use any SVM-specific packages.)

6.5 Experiments with Nonlinear Support Vector Machine (*)

Write a program to implement the nonlinear soft-margin Support Vector Machine by solving

min
α

1

2

N∑
i=1

N∑
j=1

αiαjyiyjK(xi,xj)−
N∑
i=1

αi

s.t.

N∑
i=1

yiαi = 0

0 ≤ αi ≤ C

(1) (15%) Use the following set for training:

http://www.csie.ntu.edu.tw/~htlin/course/ml10fall/data/hw6_5_train.dat

Consider the polynomial kernel (1+xTx′)d with d = 3, 6, 9, and C = 0.001, 1, 1000. For each (d,C)
combination, show Ein, Ecv with 5-fold cross validation, and #SV

N (an upper-bound of leave-one-out
cross validation error). Briefly describe your findings.

(2) (15%) Use the following set for training:

http://www.csie.ntu.edu.tw/~htlin/course/ml10fall/data/hw6_5_train.dat

Consider the Gaussian-RBF kernel exp
(
−‖x−x′‖2

2σ2

)
with σ = 0.125, 0.5, 2 and C = 0.001, 1, 1000.

For each (σ,C) combination, show Ein, Ecv with 5-fold cross validation, and #SV
N (an upper-bound

of leave-one-out cross validation error). Briefly describe your findings.

(3) (30%) Use any SVM kernel, any SVM parameters on the following set for training to produce
one SVM hypothesis g:

http://www.csie.ntu.edu.tw/~htlin/course/ml10fall/data/hw6_5_train.dat

Then, use the returned SVM hypothesis to predict the label of each example within the following
test set:

http://www.csie.ntu.edu.tw/~htlin/course/ml11fall/data/hw6_5_test.dat

Describe the procedure you use to choose the kernel and the parameters, and write down the final
kernel/parameters you choose. Submit your predictions to the designated place (to be announced
on the course website)—note that you can only submit once. This time your score would be
partially partially based on how reasonable your procedure is and how well your pre-
dictions perform. So please validate your hypothesis and write down the procedure
carefully.

(Note: For this problem, you CAN use any package you want. A recommended choice is LIBSVM
developed by Prof. Chih-Jen Lin in our department)

6.6 L2-Loss and Hard-Margin

(1) (Bonus 10%) The L2-Loss soft-margin SVM (P2) in Problem 6.3 is actually equivalent to a hard-
margin SVM that takes examples (x̃n, ỹn) instead of (xn, yn). Write down (x̃n, ỹn) and prove the
equivalence.

(Note: You can actually use the equivalence to make the derivations in Problem 6.3 simpler.)
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