
Machine Learning (NTU, Fall 2011) instructor: Hsuan-Tien Lin

Homework #5
TA email: ml2011ta@csie.ntu.edu.tw

RELEASE DATE: 11/21/2011

DUE DATE: 12/5/2011, BEFORE THE END OF CLASS

Unless granted by the instructor in advance, you must turn in a printed/written copy of your solutions
(without the source code) for all problems. For problems marked with (*), please follow the guidelines on
the course website and upload your source code and predictions to designated places.

Any form of cheating, lying, or plagiarism will not be tolerated. Students can get zero scores and/or fail
the class and/or be kicked out of school and/or receive other punishments for those kinds of misconducts.

Discussions on course materials and homework solutions are encouraged. But you should write the final
solutions alone and understand them fully. Books, notes, and Internet resources can be consulted, but
not copied from.

Since everyone needs to write the final solutions alone, there is absolutely no need to lend your homework
solutions and/or source codes to your classmates at any time. In order to maximize the level of fairness
in this class, lending and borrowing homework solutions are both regarded as dishonest behaviors and will
be punished according to the honesty policy.

You should write your solutions in English with the common math notations introduced in class or in the
problems. We do not accept solutions written in any other languages.

5.1 Data-Dependent Transforms

(1) (10%) Consider Problem 3.21(a) of LFD and Ein evaluated with the 0/1 error. Argue that there
exists some w̃ in the Z space such that Ein = 0. In other words, the transformed data set is always
linearly separable in the Z space.

(2) (5%) Do Problem 3.21(a) of LFD.

(3) (10%) Consider Problem 3.21(b) of LFD and Ein evaluated with the 0/1 error. Argue that there
exists some w̃ in the Z space such that Ein = 0. In other words, the transformed data set is
always linearly separable in the Z space. (Note: You can use the fact that if x1,x2, · · · ,xN are all
different, the matrix A = [amn] with amn = φm(xn) with the Gaussian φm is always invertible.)

(4) (5%) Do Problem 3.21(b) of LFD.

5.2 Gradient and Newton Directions

Do Problem 3.18 of LFD using

E(u, v) = e2u + ev + e4uv + u2 − uv + 2v2 − 4u+ v.

(1) (5%) Do Problem 3.18(a) of LFD.

(2) (5%) Do Problem 3.18(b) of LFD.

(3) (5%) Do Problem 3.18(c) of LFD.

(4) (5%) Do Problem 3.18(d) of LFD.

(5) (5%) Do Problem 3.18(e) of LFD.

1 of 4



Machine Learning (NTU, Fall 2011) instructor: Hsuan-Tien Lin

5.3 Model Overfit

Do Exercise 4.3 of LFD, assuming that the model complexity is always below the target complexity. This
is a brain-storming problem that requires reasoning rather than just answers. Thus, you are strongly
encouraged to discuss about this problem on the book forum.

(1) (5%) Do Exercise 4.3(a) of LFD.

(2) (5%) Do Exercise 4.3(b) of LFD.

(3) (5%) Do Exercise 4.3(c) of LFD.

(4) (5%) Do Exercise 4.3(d) of LFD.

5.4 Regularization and Virtual Examples

In Tikhonov regularization (see Exercise 4.5), when using the augmented error, the regularized weights
are given by

wreg = (ZTZ + λΓTΓ)−1ZTy.

The Tikhonov regularizer Γ is a k× (d̃+1) matrix, each row corresponding to a d̃+1 dimensional vector.
On the other hand, each row of Z corresponds to a d̃+1 dimensional vector. In this problem, we see how
the two matrices are related. For each row of Γ, construct a virtual example (zN+i, yN+i) for i = 1, . . . k,
where zN+i is the vector obtained from the i-th row of Γ multiplied by

√
λ and yN+i = 0.

(1) (5%) Write down the virtual examples that are added to the original data set when using the
common squared regularizer in Equation (4.5) of LFD.

(2) (10%) Prove that solving Tikhonov-regularized linear regression is equivalent to applying the
plain-vanilla linear regression on {(zn, yn)}N+k

n=1 .

You can check Problem 4.8 of LFD (which unfortunately contains some bugs) for some explanations
of the meaning of this problem.

5.5 Experiments with Coordinate Descent for Perceptron Learn-
ing (*)

In class, we mention that learning can be achieved with the following steps:

(1) Connect Eout to Ein (VC bound or other theoretical bounds).

(2) Define an error function E directly from Ein or as something related to Ein.

(3) Minimize E with tools in optimization.

For instance, the pocket algorithm follows the VC bound, assumes an error function E that is exactly
Ein in classification and minimizes Ein (the NP-hard problem) with an special iterative solver. One rep-
resentative iterative solver that we have introduced is gradient descent (and stochastic gradient descent).

Recall that in the gradient descent solver, we update the weight vector by

w(t+ 1) = w(t) + η · (−∇E(w(t)))

with a fixed small η > 0. In this problem, we explore the possibility of using a more general update
formula. That is

w(t+ 1) = w(t) + ηt · v(t)

for some update direction v(t) ∈ Rd+1 and step size ηt ∈ R. We will consider a greedy search algorithm
as follows. In the t-th iteration, the goal of the algorithm is to choose v(t) and ηt such that

E(w(t+ 1))

is minimized.

2 of 4



Machine Learning (NTU, Fall 2011) instructor: Hsuan-Tien Lin

(1) (10%) Consider the simplest case of using some v(t) = v that satisfies vi = 1 for a specific
i and vi = 0 otherwise. In other words, w(t + 1) and w(t) differs only in the i-th component
(direction). Consider E = Ein with the classification (0/1) error. When given w(t) and v(t),
ASSUME THAT all (xn)i are non-zero, derive an efficient algorithm that finds the step ηt
along the direction v(t) which minimizes E. That is, solve the following optimization problem.

min
ηt∈R

1

N

N∑
n=1

q
yn 6= sign

(
w(t+ 1)Txn

)y
subject to w(t+ 1) = w(t) + ηtv(t).

Hint: decision stump, Decision stump, Decision Stump, DECISION STUMP.
Hmm, did we provide enough hint?

(2) (5%) If some of (xn)i are zero, how does your algorithm above change?

(3) (5%) If the v(t) given is an arbitrary vector rather than the specific one above, how does your
algorithm above change?

(4) (15%) The coordinate descent algorithm for optimization is as follows:

(a) initialize a (d+1)-dimensional vector w(1), say, w(1)←− (0, 0, . . . , 0) .

(b) for t = 1, 2, . . . , T

• choose some direction v(t)

• update

w(t+ 1)←− w(t) + ηtv(t).

by minimizing the error function over ηt.

One special case of the coordinate descent algorithm is to choose

v(1) = (1, 0, 0, · · · , 0)

v(2) = (0, 1, 0, · · · , 0)

· · ·
v(d+ 1) = (0, 0, 0, · · · , 1)

v(d+ 2) = (1, 0, 0, · · · , 0)

· · ·

The special case is called cyclic coordinate descent. Implement the cyclic coordinate descent algo-
rithm, use T = 10000, and run the algorithm on the following set for training:

http://www.csie.ntu.edu.tw/~htlin/course/ml11fall/data/hw5_train.dat

Then, use the returned perceptron to predict the label of each example within the following test set:

http://www.csie.ntu.edu.tw/~htlin/course/ml11fall/data/hw5_test.dat

Submit your predictions to the designated place (to be announced on the course website)—note
that you can only submit once.

(5) (15%) Another special case of the coordinate descent algorithm is to choose v randomly. Consider
picking each component of v by a standard Gaussian distribution (mean 0 and variance 1). The
special case is called random (Gaussian) coordinate descent. Implement the random coordinate
descent algorithm, use T = 10000, and run the algorithm on the following set for training:

http://www.csie.ntu.edu.tw/~htlin/course/ml11fall/data/hw5_train.dat

Then, use the returned perceptron to predict the label of each example within the following test set:

http://www.csie.ntu.edu.tw/~htlin/course/ml11fall/data/hw5_test.dat

Submit your predictions to the designated place (to be announced on the course website)—note
that you can only submit once.

3 of 4



Machine Learning (NTU, Fall 2011) instructor: Hsuan-Tien Lin

(6) (10%) Run the pocket algorithm you have implemented with T = 10000 on the following set for
training:

http://www.csie.ntu.edu.tw/~htlin/course/ml11fall/data/hw5_train.dat

Compare the Ein you get for pocket, cyclic coordinate descent and random coordinate descent.
Briefly state your findings.

5.6 Polynomial Regression and Overfitting (*)

Hint/Warning: Time-consuming! Please start running the experiments as early as possible.
Do a variant of Exercise 4.2 of LFD with the following changes:

• Change H2 to H1 (i.e., the original linear regression).

• Change H10 to H8 (eighth order polynomials).

You may find some hints in Problem 4.3 of LFD.

(1) (10%) First, read the definition of Legendre polynomials in Problem 4.2 of LFD. Then, plot and
list the formula of L5 to L8. You’ll actually find L0 to L5 listed on LFD page 4-11.

(2) (10%) Then, explain how you compute Eout(g) for any polynomial function g(x) under the setting
of Exercise 4.2 of LFD. (Hint: There is an analytic solution. You get partial credit if you compute
Eout through Etest and explain your procedure clearly.)

(3) (20%) Plot your results with figures like those in Figure 4.2 of LFD.

(4) (10%) Compare your figures with Figure 4.2 of LFD and briefly state your findings.

5.7 Hints and Virtual Examples

(1) (Bonus 10%) Continue from Homework 5.4. Assume that we have some known hints whint about
the rough value of w and hence want to use

λ‖w −whint‖2

as the regularizer instead of the squared λwTw. What virtual examples should we equivalently
add to the original data set?

4 of 4


