
Machine Learning (NTU, Fall 2011) instructor: Hsuan-Tien Lin

Homework #4
TA email: ml2011ta@csie.ntu.edu.tw

RELEASE DATE: 11/07/2011

DUE DATE: 11/21/2011, BEFORE THE END OF CLASS

Unless granted by the instructor in advance, you must turn in a printed/written copy of your solutions
(without the source code) for all problems. For problems marked with (*), please follow the guidelines on
the course website and upload your source code and predictions to designated places.

Any form of cheating, lying, or plagiarism will not be tolerated. Students can get zero scores and/or fail
the class and/or be kicked out of school and/or receive other punishments for those kinds of misconducts.

Discussions on course materials and homework solutions are encouraged. But you should write the final
solutions alone and understand them fully. Books, notes, and Internet resources can be consulted, but
not copied from.

Since everyone needs to write the final solutions alone, there is absolutely no need to lend your homework
solutions and/or source codes to your classmates at any time. In order to maximize the level of fairness
in this class, lending and borrowing homework solutions are both regarded as dishonest behaviors and will
be punished according to the honesty policy.

You should write your solutions in English with the common math notations introduced in class or in the
problems. We do not accept solutions written in any other languages.

4.1 VC Dimension: Union and Intersection

(1) (5%) Do Problem 2.14(a) of LFD.

(2) (10%) Do Problem 2.14(b) of LFD.

(3) (10%) Do Problem 2.14(c) of LFD for the case ofK = 2 and the assumption that the intersection
of H1 and H2 is non-empty.

(4) (5%) Under the assumption that the intersection of all Hi is non-empty, do Problem 2.15(a) of
LFD.

(5) (10%) Under the assumption that the intersection of all Hi is non-empty, prove Problem 2.15(b)
of LFD.

(6) (10%) Under the assumption that the intersection of all Hi is non-empty, do Problem 2.15(c) of
LFD.

(7) (10%) The bound in Problem 2.15(c) of LFD gives you dVC ≤ 3 log2 d+ 2 for the decision stump
learning model (in Homework 3.4) in Exercise 3.15. Assuming that you know the VC dimension of
the one dimensional decision stump to be 2 (proved in class), do the last part of Exercise 3.15 of
LFD and improve the upper bound to dVC ≤ 2 log2 d+ 2.

4.2 The Expected In-Sample Error of Linear Regression

(1) (5%) Do Exercise 3.3(b) of LFD.

(2) (5%) Do Exercise 3.3(c) of LFD.

(3) (5%) Do Exercise 3.3(d) of LFD.

(4) (5%) Do Exercise 3.4(a) of LFD.

(5) (5%) Do Exercise 3.4(b) of LFD. What is the “matrix” that the hint talks about?

(6) (5%) Do Exercise 3.4(c) of LFD. The simpler equation (in terms of H and ε you write down),
the better.

(7) (5%) Do Exercise 3.4(d) of LFD.
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4.3 The Feature Transforms

(1) (5%) Do Exercise 3.12(a) of LFD.

(2) (5%) Do Exercise 3.12(b) of LFD.

(3) (5%) Do Exercise 3.12(c) of LFD.

(4) (4%) Do Exercise 3.13(a) of LFD.

(5) (4%) Do Exercise 3.13(c) of LFD.

(6) (4%) Do Exercise 3.13(d) of LFD.

(7) (4%) Do Exercise 3.13(e) of LFD.

(8) (4%) Do Exercise 3.13(f) of LFD.

4.4 Least-squared Linear Regression (*)

Implement the least-squared linear regression algorithm in Section 3.2 of LFD to compute the optimal
(d+ 1)-dimensional w that solves

min
w

N∑
n=1

(
yn −

(
wTxn

))2
.

(1) (15%) Generate a training data set of size 100 as directed by Exercise 3.2 of LFD. Generate a
test set of size 1000 of the same nature. Run the pocket algorithm (Homework 3.5) on the training
set for T = 1000 to get wpocket. Run the linear regression algorithm to get wlin. Estimate the
performance of the two weight vectors with the test set to get Etest(wpocket) and Etest(wlin), in
terms of the 0/1 loss (classification). Repeat the experiment (with fresh data sets) 100 times and
plot Etest(wpocket) versus Etest(wlin) as a scatter plot.

(2) (5%) Based on your findings in the previous problem, which algorithm would you recommend
to your boss for this data set? Why?

Please check the course policy carefully and do not use sophisticated packages in your solution. You
can use standard matrix multiplication and inversion routines.

4.5 Gradient Descent for Logistic Regression (*)

Consider the formulation

min
w

E(w), (A1)

where E(w) =
1

N

N∑
n=1

E(n)(w), and E(n)(w) = ln

(
1 + exp

(
−yn

(
2wTxn

)))
.

(1) (10%) Do Problem 3.17(b) of LFD. See Exercise 3.6(c) for the definition of the cross-entropy error
function. This shows that the formulation (A1) is equivalent to cross-entropy-minimizing logistic
regression.

(2) (5%) Do Problem 3.17(c) of LFD.

(3) (5%) For a given (xn, yn), derive its gradient ∇E(n)(w).

(4) (15%) Implement the fixed learning rate stochastic gradient descent algorithm for (A1).

(a) initialize a (d+1)-dimensional vector w(0), say, w(0) ←− (0, 0, . . . , 0) .

(b) for t = 1, 2, . . . , T
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• randomly pick one n from {1, 2, . . . , N}.
• update

w(t) ←− w(t−1) − η · ∇E(n)(w(t−1)).

Assume that
g
(t)
1 (x) = sign

(
(w(t))Tx

)
,

where w(t) are generated from stochastic gradient descent algorithm above. Run the algorithm
with η = 0.001 and T = 2000 on the following set for training:

http://www.csie.ntu.edu.tw/~htlin/course/ml11fall/data/hw4_train.dat

and the following set for testing:

http://www.csie.ntu.edu.tw/~htlin/course/ml11fall/data/hw4_test.dat

Plot Ein

(
g
(t)
1

)
and Etest

(
g
(t)
1

)
as a function of t and briefly state your findings.

(5) (15%) Implement the fixed-learning-rate gradient descent algorithm below for (A1).

(a) initialize a (d+1)-dimensional vector w(0), say, w(0) ←− (0, 0, . . . , 0) .

(b) for t = 1, 2, . . . , T

• update

w(t) ←− w(t−1) − η · ∇E(w(t−1)) .

Assume that
g
(t)
2 (x) = sign

(
(w(t))Tx

)
,

where w(t) are generated from gradient descent algorithm above. Run the algorithm with η = 0.001
and T = 2000 on the following set for training:

http://www.csie.ntu.edu.tw/~htlin/course/ml11fall/data/hw4_train.dat

and the following set for testing:

http://www.csie.ntu.edu.tw/~htlin/course/ml11fall/data/hw4_test.dat

Plot Ein

(
g
(t)
2

)
and Etest

(
g
(t)
2

)
as a function of t, compare it to your plot for g

(t)
1 , and briefly state

your findings.

4.6 Upper Bound of Union without Assumption

(1) (Bonus 10%) If the intersection of all Hi may be empty, show a counter-example of Problem 2.15(a)
of LFD. Then, think of a way to fix the bound (while keeping it tight) and prove it.
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