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1.1 KKT as Necessary Condition for Convex QP

Consider a quadratic programming problem

1
(P) min E(w) = inAw +b'w

w

subject to pLw > q,, form =1,2,---, M.

with A being positive semi-definite. That is, (P) is convex. We will first prove the following remarkable
fact of Karash-Kuhn-Tucker (KKT) conditions.

There exists a* € RM such that (w*, a*) satisfies the KKT conditions
if
(P) attains an optimal solution at w*.

The KKT conditions contain four parts:

M
(K1: stationarity) VE(w*)=Aw"+b = Z ) Pm.-
m=1
(K2: primal feasibility) pLw* > ¢, form=1,2,--- M.
(K3: dual feasibility) oy, >0form=1,2,---, M.

(K4: complementary slackness) af (pLw* —qn)=0form=1,2,---, M.

9

The proof that you will write below contains all the essential steps, but are not as rigorously written as
the usual math texts.

(1) (preliminary) Show that for any w = w* 4+ nv,
1
E(w) = E(w*) + nv! VE(w*) + §n2vTAV.
(2) (stationarity, “if”) Assume that (P) attains an optimal solution at w* but
M
VEW") =Y afpm+V
m=1

with a nonzero v that is orthogonal to p,, for all m.

Let w = w* — v with n > 0. Use the fact in (preliminary) to show that when 7 is small enough,
E(w) < E(w*) and pLw > g, for all m. That is, E(w) is a better solution than E(w*).

Argue that you have proved that if (P) attains an optimal solution at w*, (K1) must be satisfied.

(3) (dual feasibility, linearly independent constraints, “if”) Assume that (P) attains an optimal solution
at w*. We now know that

M
VE(W*) =Y a},pm
m=1

for some a*. We shall first consider the case when the vectors p,, are linearly independent. Assume
that dual feasibility is not satisfied. That is, without loss of generality, let o < 0. Since p,, are
linearly independent,

M
P1 = Zﬂmpm‘i’v

m=2

with a nonzero v that is orthogonal to p,, for m =2,3,--- , M.
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Let w = w* 4+ v with 7 > 0. Use the fact in (preliminary) to show that when 7 is small enough,
E(w) < E(w*) and pLw > g, for all m. That is, E(w) is a better solution than E(w*).

Argue that you have proved that if (P) attains an optimal solution at w* and p,, are linearly
independent, (K3) must be satisfied.

(4) (dual feasibility, general constraints, “if”) Assume that (P) attains an optimal solution at w*. If
{pm }M_, are linearly dependent, but {p,,}*_, are linearly independent. Assume that (K1) is
satisfied with some « such that a; < 0. Then, argue that there always exists an a* that satisfies
both (K1) and (K3) with

a7 = 0
ar, > 0form=23,---,M.

Argue that you have proved that if (P) attains an optimal solution at w*, (K3) must be satisfied.

(5) (complementary slackness, linearly independent constraints, “if”) Assume that (P) attains an
optimal solution at w*. We now know that

M
VE(W") =Y a},Pm
m=1

for some a* with non-negative components. We shall first consider the case when the vectors p,,
are linearly independent. Assume that complementary slackness is not satisfied. That is, without
loss of generality,

of(pfw* —q1) #0.

From (K2) and (K3), it must mean that both af > 0 and pfw* > ¢;. Since p,, are linearly

independent,
M
P1 = Z Bmpm +v
m=2
with a nonzero v that is orthogonal to p,, for m =2,3,--- | M.

Let w = w* — v with n > 0. Use the fact in (preliminary) to show that when 7 is small enough,
E(w) < E(w*) and pL w > g, for all m. That is, F(w) is a better solution than E(w™).

Argue that you have proved that if (P) attains an optimal solution at w* and p,, are linearly
independent, (K4) must be satisfied.

(6) (complementary slackness, general constraints, “if”) Use the same trick in (4) to argue that if (P)
attains an optimal solution at w* for any general linear constraints, (K4) must be satisfied.

1.2 KKT as Sufficient Condition for Convex QP

We will now prove the sufficiency.

There exists a* € RM such that (w*, a*) satisfies the KKT conditions
only if
(P) attains an optimal solution at w*.

Assume that (w*, a*) satisfies the KKT conditions but w* is not an optimal solution of (P). Then,
there exists w that satisfies (K2) with E(w) < E(w*).

(1) (convexity) Let v =w —w* and consider u = w* + nv. Using the fact that F(w) is convex, argue
that E(u) < E(w*) forall 0 < n < 1.

(2) (forbidden directions) Assume that pZ v > 0 for all m with o, > 0. Using the fact that (w*, a*)
satisfies (K1) and (K3), argue that nvI VE(w*) > 0. Then, show that E(u) > E(w*) for all 7.
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(3) (sufficiency) Argue from (1) and (2) that without loss of generality, there exists pfv < 0 with
at > 0. Using the fact that v = w — w*, argue that p! w* > pTw > ¢;.
Argue that there is a violation of (K4) and hence some assumptions must be wrong—namely, w*
should be an optimal solution!

Then, you can actually use KKT to prove the strong duality of convex QP problems (which includes
the SVM problem we had in class). A standard treatment can be found on Pages 243 and 244 of the
Convex Optimization textbook by Boyd and Vandenberghe (freely available online).
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