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1.1 KKT as Necessary Condition for Convex QP

Consider a quadratic programming problem

(P ) min
w

E(w) =
1

2
wT Aw + bTw

subject to pT
mw ≥ qm for m = 1, 2, · · · ,M.

with A being positive semi-definite. That is, (P ) is convex. We will first prove the following remarkable
fact of Karash-Kuhn-Tucker (KKT) conditions.

There exists α∗ ∈ RM such that (w∗,α∗) satisfies the KKT conditions
if

(P ) attains an optimal solution at w∗.

The KKT conditions contain four parts:

(K1: stationarity) ∇E(w∗) = Aw∗ + b =

M∑
m=1

α∗
mpm.

(K2: primal feasibility) pT
mw∗ ≥ qm for m = 1, 2, · · · ,M.

(K3: dual feasibility) α∗
m ≥ 0 for m = 1, 2, · · · ,M.

(K4: complementary slackness) α∗
m(pT

mw∗ − qm) = 0 for m = 1, 2, · · · ,M.

The proof that you will write below contains all the essential steps, but are not as rigorously written as
the usual math texts.

(1) (preliminary) Show that for any w = w∗ + ηv,

E(w) = E(w∗) + ηvT∇E(w∗) +
1

2
η2vT Av.

(2) (stationarity, “if”) Assume that (P ) attains an optimal solution at w∗ but

∇E(w∗) =

M∑
m=1

α∗
mpm + v

with a nonzero v that is orthogonal to pm for all m.

Let w = w∗ − ηv with η > 0. Use the fact in (preliminary) to show that when η is small enough,
E(w) < E(w∗) and pT

mw ≥ qm for all m. That is, E(w) is a better solution than E(w∗).

Argue that you have proved that if (P ) attains an optimal solution at w∗, (K1) must be satisfied.

(3) (dual feasibility, linearly independent constraints, “if”) Assume that (P ) attains an optimal solution
at w∗. We now know that

∇E(w∗) =

M∑
m=1

α∗
mpm

for some α∗. We shall first consider the case when the vectors pm are linearly independent. Assume
that dual feasibility is not satisfied. That is, without loss of generality, let α∗

1 < 0. Since pm are
linearly independent,

p1 =

M∑
m=2

βmpm + v

with a nonzero v that is orthogonal to pm for m = 2, 3, · · · ,M .
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Let w = w∗ + ηv with η > 0. Use the fact in (preliminary) to show that when η is small enough,
E(w) < E(w∗) and pT

mw ≥ qm for all m. That is, E(w) is a better solution than E(w∗).

Argue that you have proved that if (P ) attains an optimal solution at w∗ and pm are linearly
independent, (K3) must be satisfied.

(4) (dual feasibility, general constraints, “if”) Assume that (P ) attains an optimal solution at w∗. If
{pm}Mm=1 are linearly dependent, but {pm}Mm=2 are linearly independent. Assume that (K1) is
satisfied with some α such that α1 < 0. Then, argue that there always exists an α∗ that satisfies
both (K1) and (K3) with

α∗
1 = 0

α∗
m ≥ 0 for m = 2, 3, · · · ,M.

Argue that you have proved that if (P ) attains an optimal solution at w∗, (K3) must be satisfied.

(5) (complementary slackness, linearly independent constraints, “if”) Assume that (P ) attains an
optimal solution at w∗. We now know that

∇E(w∗) =

M∑
m=1

α∗
mpm

for some α∗ with non-negative components. We shall first consider the case when the vectors pm

are linearly independent. Assume that complementary slackness is not satisfied. That is, without
loss of generality,

α∗
1(pT

1 w
∗ − q1) 6= 0.

From (K2) and (K3), it must mean that both α∗
1 > 0 and pT

1 w
∗ > q1. Since pm are linearly

independent,

p1 =

M∑
m=2

βmpm + v

with a nonzero v that is orthogonal to pm for m = 2, 3, · · · ,M .

Let w = w∗ − ηv with η > 0. Use the fact in (preliminary) to show that when η is small enough,
E(w) < E(w∗) and pT

mw ≥ qm for all m. That is, E(w) is a better solution than E(w∗).

Argue that you have proved that if (P ) attains an optimal solution at w∗ and pm are linearly
independent, (K4) must be satisfied.

(6) (complementary slackness, general constraints, “if”) Use the same trick in (4) to argue that if (P )
attains an optimal solution at w∗ for any general linear constraints, (K4) must be satisfied.

1.2 KKT as Sufficient Condition for Convex QP

We will now prove the sufficiency.

There exists α∗ ∈ RM such that (w∗,α∗) satisfies the KKT conditions
only if

(P ) attains an optimal solution at w∗.

Assume that (w∗,α∗) satisfies the KKT conditions but w∗ is not an optimal solution of (P ). Then,
there exists w that satisfies (K2) with E(w) < E(w∗).

(1) (convexity) Let v = w−w∗ and consider u = w∗ + ηv. Using the fact that E(w) is convex, argue
that E(u) < E(w∗) for all 0 < η ≤ 1.

(2) (forbidden directions) Assume that pT
mv ≥ 0 for all m with α∗

m > 0. Using the fact that (w∗,α∗)
satisfies (K1) and (K3), argue that ηvT∇E(w∗) ≥ 0. Then, show that E(u) ≥ E(w∗) for all η.
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(3) (sufficiency) Argue from (1) and (2) that without loss of generality, there exists pT
1 v < 0 with

α∗
1 > 0. Using the fact that v = w −w∗, argue that pT

1 w
∗ > pT

1 w ≥ q1.

Argue that there is a violation of (K4) and hence some assumptions must be wrong—namely, w∗

should be an optimal solution!

Then, you can actually use KKT to prove the strong duality of convex QP problems (which includes
the SVM problem we had in class). A standard treatment can be found on Pages 243 and 244 of the
Convex Optimization textbook by Boyd and Vandenberghe (freely available online).
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